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ABSTRACT  
Among the challenging unsolved technical problems that have plagued the minds 

of scientist and engineers throughout the 20
th

 and 21
st
 century is the development of a 

quantifiable model to accurately estimate or explain Core Power Losses (CPL). 

Theoretical advances in magnets led to many model proposals, but as these models where 

experimentally examined, they quickly lost their validation. Many of the current models 

use manufacturer’s material estimates to form limited curve fitted equations. These 

equations are only valid for a specific waveform over a specified range. Unless the 

designers use the same conditions used to determine the manufacturer’s fitted equations, 

the models quickly lose their precision. The scope of this thesis is to explain and compare 

several of the current models and evaluate them using experiment data. The validity of 

some of the term component used in many of these models will also be investigated.  
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Section 1 Introduction 

1.1 Purpose/Problem  
  

Methods to accurately predict power losses in magnetic materials have occupied the 

minds of engineers and scientists since Charles Steinmetz first published the “Theory and 

calculation of alternating current phenomena" in 1897. Steinmetz is credited with being the one 

to first describe hysteresis loss, a power loss mechanism. Since the beginning of this century 

many models have been developed and used in this estimation. Unfortunately, there is not a 

completely accurate model that can be used for all given inputs, materials and waveforms.  

 Even a hundred years after Steinmetz wrote his paper, authors are still in disagreement 

about what are the complete mechanisms that cause Core Power Losses (CPL). Many equations 

have been proposed to estimate CPL, but very little work has been reported that compares these 

models to actual Power Ferrite data. In addition, three components used in several of CPL 

empirical equations have been thoroughly investigated for many materials, but there seems to be 

a lack of literature in the realm of power ferrites. So, the three goals of this thesis are: 

1. to verify the accuracy of  the low frequency use of the Hysteresis Loss Equation, 

2. to substantiate the validity of the use of two independent variables, core area and 

conductivity, commonly found in many CPL empirical equations,  

3. and to explain and compare several empirical CPL equations against actual CPL 

experiment data in Ferrites,   

 

1.2 Significance  
  

CPL is the input power that is consumed by the magnetic material used in a magnetic 

circuit. These losses reduce the end users usable power and must be accounted for in system 

design. To compensate for these losses, large safety factors must be incorporated which result in 

over-designed systems (motors, generators).  If the losses can be accurately modeled, the safety 

factors can be reduced. This results in smaller components, lighter displacement, and overall 

lower cost.   

An example of a potential user of an accurate CPL model is the designers of the complex 

power systems that operate on United States Navy warships. Space and weight are two major 

constraints in ship design. Almost every electrical component used to power naval vessels, 

including the large and particularly heavy electrical engines, are over-designed due to inaccurate 

CPL estimates. This increases the weight of the ship and reduces available internal volume. 

Using a validated accurate core power loss model, engineers could effectively and efficiently 

design products based on size and weight using core power losses as a parameter. 

 

1.3 Thesis Overview  
 

This thesis is broken into 5 major chapters. Chapter 1 includes theory background behind 

Core Power Losses (CPL), descriptions of several CPL models, and the goals of the thesis. 

Chapter 2 describes the experiments required to accomplish these goals and the accuracy of those 
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experiments. Chapter 3 provides experimental results of using the Hysteresis Loss equation for 

low frequency applications. Chapter 3 also provides experimental data used to validate the use of 

core area and conductivity as independent terms in CPL empirical equations for 3F3 Power 

Ferrite cores. Chapter 4 presents the residuals of the Least Square Best Fit to several empirical 

models when compared to actual CPL measured data. The conclusion of this thesis can be found 

in Chapter 5. 

    

1.4 Background  
 

A robust history of the progression of the traditional models and methods used to 

calculate Core Power Losses from Steinmetz’s Hysteresis paper of 1897 to Bertotti’s 1981, “A 

new approach to the study of loss anomaly in SiFe” can be found in reference [1]. This paper 

provides an excellent reference for the interested reader in the scientific advances in the 

determinations of the causes of magnetic Core Power Losses.  

To understand Core Power Losses, one must first understand the general theory behind 

the losses. As the author of [1] explains, a magnetic core sample with a changing magnetic field 

through the core produces closed path voltages in the core. Those closed path voltages induce 

resistive eddy currents which oppose the changing magnetic field. The total mechanism gives off 

energy in the form of heat. This heat is in the form of irreversible power, i.e. energy is consumed 

by the material itself.  

Typically in literature, this energy loss, Core Power Losses (CPL), is grouped into two 

loss categories: Hysteresis Losses and Eddy Current Losses; and Eddy Current Losses are further 

subdivided into Classical Eddy Current Loss and Excess Current Losses.  The only difference 

between these three losses is the method or equation that was used to calculate them [1].  As the 

authors of [1] and [2] explain, there is no distinction between them: the losses arise from the 

same mechanism. There is even a debate of which of the losses are the most dominant. Reference 

[3] states that Classical Eddy Current Loss is relatively small compared to the other three Losses 

in power ferrites. This is in contrast to [4] who explains that Excess Current Loss is the smallest 

CPL loss.  

Two methods are used to estimate these Core Power Losses: Hysteresis models and 

empirical equations [2].  A material’s CPL can be measured by calculating the area inside a 

material’s hysteresis loop.  Hysteresis models use hysteresis shaping algorithms to estimate this 

area and several of the commonly used models can be found in references [5] and [6]. Empirical 

Equations use previously-determined CPL data fit equations to estimate CPL. References [3], 

[7],[8],[9] and [10] provide many currently used CPL Empirical equations.  An example of one 

the most widely used CPL empirical equations is the Separation of total power losses (STPL) 

equation. The STPL equation combines three empirical equations, one for each loss group, to 

give a total CPL equation. Reference [9] provides a good example of this STPL equation and 

how it is used.  Both of these methods are discussed in the next several sections.  

 

1.5 Hysteresis Loss  
 

Hysteresis loss is the energy lost in a material during a non reversible energy cycle. A 

reversible cycle is a system that can start and end a process at the same point without the 
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accumulation of additional energy. An interesting discussion of this topic was conducted by Dr. 

Steinmetz in 1892. It is included in this paper due the relevance of the topic even today.  

 

“If the complete conversion of one form of energy into another is possible, the 

opposite conversion is not completely possible. Or if we convert a certain amount of one 

form of energy into another form of energy, and this back again into the first form of 

energy, which we call a cyclic conversion of energy- we do not get back the original 

amount of energy, but less, and a part of the energy has been lost; that means, converted 

into and dissipated as heat. Therefore no complete cyclic conversion of energy exists, but 

by any such cycle the amount of available energy has decreased by the fraction that was 

converted into heat.     … Now, as long as the magnetism increases, electric energy is 

transferred from the electric current and converted into potential magnetic energy. While 

the magnetism decreases, potential magnetic energy is reconverted into electric energy, 

and appears in electric circuit as E.M.F. But the full amount is not given back to the 

electric circuit, but less. Less by that amount that has been converted into heat by 

hysteresis.” [7]  

 

 The general literature description of Hysteresis Loss is the loss of energy accrued during 

the domain direction shifts of magnetic materials. Magnetic domains are the portions of a 

material that are magnetized in the same direction. The author of [1] explains that most materials 

do not have uniform magnetic domains, i.e. the magnetization direction is not constant 

throughout the material. The material is broken up into same direction domains separated by a 

wall of adjacent and opposite direction domains. To get an overall increase in magnetic field, the 

area of the domains in that magnetic direction must increase with a corresponding decrease to the 

domains in the opposite direction.  These domain area shifts result in the domain boundary walls 

shifting. These wall shifts produce local eddy currents which, in turn, give off unrecoverable 

energy in the form of heat. The following figure helps to explain this theory.   

 

Figure 1: Domain Wall Theory, adapted from figures in Reference [1] and [2] 

This process is pertinent to almost all magnet materials under a changing magnetic field. 

For materials acting under an Alternating Current (AC) signal, the domain walls shift direction 
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every half cycle. Since the same amount of energy is lost every cycle, once the energy losses are 

calculated for one cycle, the loss can be multiplied by the frequency of the cycle to get the a total 

loss. This loss mechanism is called Hysteresis Loss. For Power Ferrites, the Hysteresis loss curve 

has a double sigmoidal shape. The figure below is an example of this Hysteresis Loss curve. The 

energy lost, or CPL, in the cycle is the area enclosed in the curve.  

 

 

Figure 2: Hysteresis Loop at 100kHz and @ 273mT 

 

Hysteresis loss can be mathematically estimated using algorithm methods such as 

Rayleigh, Peterson, Stoner-Wolhfarth, Jiles-Atherton, Globus, and Preisach [5], [6].  These 

methods use experimentally determined coefficients in algorithms to approximate the sigmiodal 

shape at varying points during the saturation curve.  As explained above, the area bounded in the 

sigmoid is the CPL. One of the benefits of using algorithm models versus any other CPL 

calculation method is their adaptability for use in a variety of materials.  

 

 

1.6 Empirical Equations  
 

For a century, CPL empirical equations have been used as a method to model CPL. CPL 

empirical equations are equations that are statistically fit to actual CPL data to provide an 

estimate of what CPL could potentially be. Equation 1 is an example of one that was first 

proposed in 1892 by Steinmetz [7].  

    Eqn 1 
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 is the power loss per unit volume,  is the maximum peak flux amplitude, β and k are 

curve fitted coefficients of actual experimental data.  One limitation to using empirically fit 

equation is their accuracy. The amount of data, the range of data, the type of data and the 

equation used in the fit all vary CPL estimation accuracy. For instance, this model assumes that 

that core loss per unit volume is independent of core geometry, for a given flux level. Moreover,  

the above equation does not include frequency as an equation variable. As it will be later 

discussed, CPL is frequency dependent and can vary CPL estimation accuracy tremendously. To 

increase CPL estimation accuracies for broader ranges more terms are incorporated in the data 

fitting.   Equation 2 is an example of this.  

     Eqn 2 

 is the power loss per unit volume,  is the maximum peak flux amplitude, α, β and k 

are curve fitted coefficients to actual experimental data. Equation 2 is what some authors refer to 

as the Steinmetz equation [11] but what the authors of [3] emphasize is actually the Power Law 

Equation (PLE). The PLE is a CPL empirical equation used by most manufacturers and 

engineers.  

Gathering the required data to fit a CPL empirical equation is one shortcoming to using 

CPL empirical equation models. CPL data is either collected by the material manufacturer and 

equations are fit to it or data is gathered by intended material user.  Data collection presents three 

obstacles: finding a standard procedure to take CPL data, obtaining equipment required by the 

procedure, and then having the time required to take the measurements. Typically, many 

scientists and engineers use already-fit manufacturer-provided CPL equations in lieu of actual 

data collection.  

Table 1 is an example of a manufacturer’s PLE coefficients used in CPL estimation.  The 

validity of CPL attained by these equation coefficients is only as accurate as the method used to 

obtain them. Several factors that can vary CPL accuracy are the type of waveforms used, actual 

characteristics of the core, i.e. size, shape and material, and the ranges of the inputs.  Thus, 

unless the engineer or scientist uses the same parameters as the manufacture, CPL accuracy may 

vary.  

Table 1: Ferroxcube 3F3 Constants [12] 

Freq ( ) k α β 
100-300 2.50E-04 1.63 2.45 

300-500 2.10E-05 1.8 2.5 

500-1000 3.60E-09 2.4 2.25 
 

Phillips, a commercial magnetic core producer, states its empirical CPL fit formula has a 

standard deviation of  5 to 17 percent with an estimated CPL accuracy to within 25% [13].  This 

demonstrates that manufacture provided CPL best fit equations is only a rough estimate.  This 

CPL estimation accuracy can be reduced through actual experimental data collection as long as 

care is taken to ensure comparable condition exists between the data set and the application of 

interest.  

As stated in the previous section, there are many methods that can be used to estimate 

Core Power Losses (CPL), be it Hysteresis Loss models or empirical equations. However, very 
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little work has been reported that compares these models to actual Power Ferrite CPL data. The 

goal of this thesis was to evaluate several models and provide a brief comparison between them. 

Unfortunately, due to time constraints, only methods that involve empirical equation 

estimations were used in this evaluation.  This was done to limit the expanse of this thesis. A 

more robust CPL model comparison could be conducted which should also included all the 

Hysteresis Loss algorithm models. 

 A list of the predominant equations for calculating loss under sine wave excitation are 

included below.  

1. Steinmetz Equation [7] 

   Eqn 3 

2. Power Law Equation [3]  

        Eqn 4  

 
3. Hysteresis Loss Equation [8],[9],[13] 

        Eqn 5 

 

4. Classical Eddy Current Loss [9],[10] 

   Eqn 6 

where 

     Eqn 7 

β = 6 for laminated thickness d (m)      (laminated cores) 

   β = 16 for cylinders of diameter d (m)  (cylindrical cores) 

   β = 20 for sphere of diameter d (m)      (spherical cores) 

    

and for square toroidal cores with d/2 << R0 using Section 1.7.2 Classical Eddy Current equation, 

Equation 8 gives kc as  

        Eqn 8 

           Both the Hysteresis Loss equation and the Classical Eddy Current Equation will be used 

in Equation 9 and 10 as the first and second term in the STPL equation (see Sect. 1.7).  

5. Bertotti’s Model [9]    

   Eqn 9 
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6. Hysteresis Loss Equation and Classical Eddy Current Equation Model
1
         

                            Eqn 10 

7. Hysteresis Loss Equation and PLE Equation Model
1
         

                        Eqn 11 

See Sections 1.7.1, 1.7.2, and 1.7.3 for a description of the terms in the above equations.  

   
1.7 Separation of Total Power Losses  

 

Separation of Total Power Losses (STPL) is a widely used method for Core Power 

Losses (CPL) calculation. STPL divides total Core Power Losses into three separate 

subdivisions; Hysteresis Loss (Ph), Classical Eddy Current Loss (Pcl), and Excess Eddy Current 

Loss (Pex). The following equation is how these three subdivisions are combined to provide a 

total CPL equation. An explanation of the terms used in (Eqn 12), a STPL model, will be 

presented in the following sections. 

    Eqn 12 

Hysteresis loss is defined as the loss equal to the area of the static magnetization loop 

times the cycle rate [13]. Classical Eddy Current loss is based on Maxwell’s equations, but does 

not including domain wall theory [14]. Excess Loss is the loss not included in the two previous 

loss mechanisms. 

(Eqn 9) is an example of a commonly used STPL model which all three CPL components 

are present; Hysteresis Loss, Classical Eddy Current Loss, along with an additional term he 

introduces as Excess Eddy Current Loss. This model was derived by Bertotti [9] and will be 

discussed in greater detail discussed later in the thesis.  

  

 

 

 is the power loss per unit volume,  is the maximum peak flux amplitude, f is 

frequency, β, kh, kc and Vo are curve fitted coefficients determined through actual experimental 

data. S is the cross-sectional area of the core, σ is the conductivity of the material and G is a unit-

less constant with value of .1356. 

One argument used to justify STPL method in power ferrite applications is that when loss 

data from Manganese Zinc (MnZn) Power Ferrites between 100 kHz to 500 kHz CPL data is 

empirically fit to the PLE given in Equation 3, the values of the curve-fitted coefficients are 

consistent with several STPL terms. The first STPL term, Hysteresis Loss, will be 

experimentally justified in Section 3.1 and will not be discussed in this section, but justification 

of the other two can be deduced based on the range of the curve fitted coefficients.   As the 

references [3],[5],and [12] state, the curve-fitted coefficients, α and β, range between 1.4 and 2.8 

and 2.4 and 3 respectively. As [5] points out, since α is not 1, there must be an additional Power 

Loss term other then Hysteresis Loss implicitly (assuming that a linear sum of different terms is 
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an appropriate formation.) Reference [3] states that since Static Hysteresis is proportional to 

frequency, and β is about 1.5 to 2, the bulk of the Power Loss must come from an Excess Loss 

term. 

An example of manufacturer curve fitted coefficients commonly used in Power Ferrite 

application can be found in Table 2. 

 

Table 2: List of MnZn Ferroxcube Power Loss Equation Coefficients [12] 

 

  Freq (khz) C α β 

3F3 

100-300 2.50E-04 1.63 2.45 

300-500 2.10E-05 1.8 2.5 

500-1000 3.60E-09 2.4 2.25 

3F4 
500-1000 1.20E-03 1.75 2.9 

1000-3000 1.10E-11 2.8 2.4 

3C30 
20-100 7.13E-03 1.42 3.02 

100-200 7.13E-03 1.42 3.02 

3C90 20-200 3.20E-03 1.46 2.75 

3C94 
20-200 2.37E-03 1.46 2.75 

200-400 2.10-e9 2.6 2.75 

 As Table 2 indicates, the curve fitted coefficient’s values are frequency dependent and 

change from one material to another. The next three sections will discuss the theory behind the 

three components of STPL equation in greater detail.  

   

 

1.7.1 Hysteresis Loss 
 

Hysteresis Loss is the first component of the traditional Separation of Total Power Losses 

equations. Several of the Hysteresis Loss methods discussed above can be used for this 

determination. For this thesis, an experimental determined method outlined in several papers was 

used.  This method uses low frequency magnetic core experimentation to collect low frequency 

CPL data. This data is then curve fitted to provide a Hysteresis Loss equation to be used for the 

higher frequency applications of STPL.   

Reference [13] says that the area of the Hysteresis loop times the frequency at very low 

frequencies is an accurate estimate of CPL. He explains that at low frequencies, the power loss 

due to the Classical Eddy Current Loss and Excess Eddy Current Loss is very small when 

compared to the Hysteresis Loss. Reference [9] also explains that for low frequencies, Hysteresis 

losses are the dominant loss mechanism [9]. The Hysteresis Loss equation, (Eqn 4), has the form 

 
The Power Loss due to Hysteresis, Ph, was found at low frequencies as suggested by 

reference [13]. Curve fitting coefficients kh and β were determined using Core Power Loss data 

taken at 70 and 140 Hz. Section 3.1 provides the result of experimentation used to measure 

actual Hysteresis Loss curve fitted coefficients in (Eqn 4) for 3F3 power ferrite material.  

 

1.7.2 Classical Eddy Current Loss 
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Classical Eddy Current Loss is usually described in terms of core sample in a changing 

magnetic field. The changing field creates closed path voltages in the sample, which then 

produces resistive eddy currents that oppose the changing magnetic field. The resultant eddy 

currents produce material power losses. Classical Eddy Current Loss, (Eqn 6), is a physics-based 

equation mathematically derived to describe power loss based on ohmic conduction. A form of 

this equation is included in Steinmetz’s Iron Power Loss estimates presented in 1892 and as [1] 

explains, “it might have first been deduced by Steinmetz, himself [7].” The Classical Eddy 

Current Loss equation, has the form  

 

 Where Pc is the classical eddy current power loss, f is frequency,  is the maximum 

peak flux amplitude,  for a cylindrical core, and  is the conductivity. Ac is the 

cross-sectional area of the core. kcl is the coefficient that accounts for geometry and conductivity 

of that core [1]. The model’s foundation is the assumption that magnetic fields in a material are 

both uniform and parallel to the cores axis [1]. Since Ac is included in the equation, it can be 

deduced that (Eqn 6) is proportional to core cross-sectional area. Thus, one does not expect a 

core loss per unit volume to be independent of core cross-sectional area if indeed this is a correct 

model of the loss behavior. 

A derivation for Classical Eddy Current Loss, Pcl, follows. This derivation was conducted 

by Dr. David Perreault and the author using a cylindrical rod of homogenous permeability. It was 

also assumed that eddy currents flow tangential to that rod. The derivation is provided for the 

interested readers. Reference [13], [15], [16], [17] and [18] provides Pcl equations for several 

varying core shapes. 

 

The assumptions for the derivation of Classical Eddy Current Loss are:  

1. Homogenous Permeability 

2. Flux Density, , flows into a circular cross section cylinder 

3. The magnetic fields in a material are uniform. 

 

 

Figure 3: 3D Cylinder for Pc derivation 
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 If the radius of a loop in the cylinder, r, varies between zero and the outer radius, rm, and 

the cylinders enclosed flux, Φ, is given by the equation , the loop voltage, Vpk, can be 

written as  

 Vpk = r
2

 Eqn 13 

   

 Cylinder Resistance, R, can be written as cross-section of the cylinder, Ac, over the 

conductivity of the material times the length of the cylinder. R = 2 r/σl. l is the length of the 

cylinder. 

 

 If magnetic field is constant over the cores cylindrical cross section, the Average Power 

Dissipated with respect to r is given by (Eqn 14). 

      Eqn 14 

 

Total Power, Ptot, then becomes  

       Eqn 15 

Integrating (Eqn 15) over the width of the cylinder results in (Eqn 16).   

     Eqn 16 

 

To get power per unit volume, (Eqn 18), (Eqn 16) is divided by the volume of the cylinder.  

     Eqn 17 

 

                                                                    Eqn 18 

Angular frequency, ω, is converted to 2πf in (Eqn 19).  

 

                                                                Eqn 19 

 

With cylinder area, Ac, equal to the rm
2
, (Eqn 19) can be written with respect to core cross-

sectional area by (Eqn 20).  
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     Eqn 20 

 

The accuracies of the above equation are bounded by a cylindrical shaped core and the 

previous given assumption. The experimental portion of the thesis used a square toroid and not a 

cylindrical core, so a deviation from of the equation is required. This deviation is the result of a 

square toroid not having a uniform magnetic field in the core. For 

calculation, Bessel functions were required to obtain an estimate 

of the Core Loss.  

 

Reference [18] provides the derivation for square cross-

section toroid and is presented for the interest of the reader.  The 

equation has been modified to allow a useful Classical Eddy 

Current equation to be used throughout this paper. 

 

 

For d/2 << R0 

 

              Eqn 21 

 

 
 

 

Where =2 f  the frequency, N is the number of turns,   and are the permeability of 

free space and relative permeability respectively, I is the rms value of current, d is the height of 

the core, R2 and R1 are the outer and inner diameter of the core respectively, and  is the skin 

depth. 

 

Given the following equations; 

 

                               Eqn 22 

                                      Eqn 23  

                                 Eqn 24  

                                                                                Eqn 25 

Figure 4: Rectangular toroidal Core Figure [40] 
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and the Ptot from above the following is the Ptot in terms of  and f.  

 

     Eqn 26 

 

le is the core equivalent length, σ is the conductivity, d is the height of the toroid in the Z 

direction, R1 and R2 are the inner and outer dimensions of the toroid, B is the magnetic flux, and 

f is the frequency of the wave-form.  

The volume of the square core is estimated by (Eqn 27). 

   Eqn 27 

To get the Classical Eddy Current Power per unit volume, (Eqn 29), (Eqn 26) is divided 

by the volume of the core, (Eqn 27).   

   Eqn 28 

   Eqn 29 

If (Eqn 29) is factored to approximate the core cross sectional area of the square toroid to 

be given by (Eqn 30), (Eqn 29) can be written as (Eqn 20).                

    Eqn 30   

  

     Eqn 31 

 

 

 As demonstrated in (Eqn 20) and (Eqn 31), the Pcl equations for cylindrical and square 

toroids, Classical Eddy Current Loss is proportional to core cross sectional area. Section 3.3 

provides actual CPL data with varying core cross sectional area as a factor.  

 

 
1.7.3 Excess Eddy Current Loss 

 

As explained in Section 1.7, Excess Eddy Current Loss, (Excess Loss), as is one of the 

CPL mechanism that is not covered by either the Hysteresis Loss or the Classical Eddy Current 

Loss equation. Actually, many Excess Loss models, , use total CPL data minus the 
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Hysteresis Loss and Classical Eddy Current Loss equations to get the Excess Loss component in 

the STPL equation.  

   Eqn 32 

It is interesting to note that Anomalous Loss and Excess Loss are used interchangeably in 

CPL literature. Overshott emphasizes that Anomalous Loss is technically an inaccurate 

description of the loss, since Excess Loss is not an anomaly, just not mathematically adequately 

defined [19]. 

The general difference between Classical Eddy Current Loss and Excess Losses is the 

understanding that Classical Eddy Current Loss is derived by assuming that the core is both 

homogenous and has only one core eddy current loop throughout the core. Unfortunately, 

imperfections in the core material result in more than one eddy current loop. To account for these 

additional eddy current loops, STPL models use this Excess Loss term [20]. One of the reasons 

that (Eqn 31) is typically used to obtain this Excess Loss term is that the varying intrinsic 

properties of the material make Excess Loss very difficult to model.  

Reference [20] lists several of the theoretical explanation used to explain Excess Loss. 

They are listed below to give the reader an idea that the concepts of Excess Loss are dependent 

on many material properties.  

 

1. Occurrence of domain walls, domain wall angles. 

2. Non-sinusoidal, non-uniform and non-repetitive domain wall motion. 

3. Lack of flux penetration and domain wall bowling. 

4. Non-sinusoidal flux density and localized variation of flux density. 

5. Interaction between grains, grain size, grain orientation, and specimen thickness 

effects. 

6. Nucleation and annihilation of domain walls. 
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 Section 2 Experimental Data Collection Method and Design 

 

2.0 Required Experiments to achieve thesis goals  

 

As explained in Section 1.1, the three goals of this thesis are:  

1. to explain and compare several empirical Core Power Loss (CPL) equations 

against actual CPL experimental data,  

2. to substantiate the validity of the use of two independent variables, core area and 

conductivity, which are commonly found in many CPL empirical equations,  

3. and to verify the accuracy of the low frequency use of the Hysteresis Loss 

equation.  

Actual CPL and conductivity data was measured to accomplish the above goals. Section 

2 provides the method and the design apparatuses required for above measurements. Section 2 

also provides an accuracy section for each test fixture. 

Only one apparatus was built to accomplish all the goals. This apparatus needed to allow 

the user to define inputs such as frequency, excitation waveform, magnetic flux, and 

temperature. This apparatus would be used in future non-sinusoidal experiments.  

Several standard methods exist which allow the measurement of a material’s CPL.  The 

first step in choosing the method to use is to first determine which method is applicable to the 

designer’s needs. The following is a listing of the accepted International Standard 62044-3 CPL 

collection methods [21].  

 

1. Root-mean-square method  

2. V-A-W meter method 

3. Impedance analyzer method 

4. Digitizing Method 

5. Vector Spectrum method 

6. Cross-power method 

7. Reflection measurement method 

8. Calorimetric measurement 

 

For this thesis, the Digitizing Method was the chosen collection method.  The following 

are a few of the reasons why the other methods were eliminated. The Root-mean-square method 

is only proportional to CPL and does not account for phase shifts in the core [21]. V-A-W meter 

and Impedance Analyzer only use sinusoidal input waveforms [21]. As stated above, a method 

that allowed non-sinusoidal waveforms was desired. Vector Spectrum method required a 

network analyzer and the Cross-power method required Fast Fourier Transforms for all 

measurements. Reflection measurement method is usually used for frequencies above the scope 

of this thesis [21]. The Calorimetric measurement method was eliminated due to the time 

consuming measurements involved in the method.   

One benefit to the Digitizing Method was it only required an oscilloscope, probes and a 

signal generator. With only a slight alteration to the apparatus, this method also allowed for 

conductivity measurements. Section 2.3 has a list of the equipment used in this thesis. The 
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Digitizing Method used the oscilloscope to measure time discrete quantizes of core current and 

voltages. These quantizes when multiplied give CPL data.  

  

2.1 Digitizing Method for Core Power Losses Calculations 

  

 Figure 5 is the designed CPL measuring apparatus. This apparatus was developed using 

the Digitizing Method as outlined by the International Standard IEC 62044-1, IEC 62044-3 and 

[22].  A discussion of why the components selected in the Digitizing Method follows. A list of 

the equipment used in this thesis is found at the end of Section 2.4.   

  

  

Figure 5: CPL Circuit Design 

 

Two criteria were used in determining the both the material and shape of the magnetic 

core. The first criterion was to choose a core material and shape used commonly in power ferrite 

applications. The second was to choose a shape that simplified the CPL mathematical analysis 

calculation.  The frequency range used in this experiment was 100 to 700 kHz and the material 

used was 3F3. 3F3 is a Manganese Zinc power ferrite manufactured by Ferroxcube.  All the un-

gapped toriodal shaped CPL mathematical equations were found in International Standard IEC 

62044-2. For simplicity reasons, this shape was chosen.  

To measure 3F3 Core Power Losses,  the 3F3 toroid core primary and secondary windings 

were wound with the same number of turns. International Standard IEC 62044-2 provided a 

base-line for the minimum number of core turns required for CPL data collection.  As required 

by [21] the wire winding were wound as tight and as evenly around the core as possible. This 

ensured an even magnetic flux between the core and the windings. It also maximized the 

magnetic flux linkage coefficients [21].  To minimize phase shift between to the two 

oscilloscope channels, reference [21] required component connections to the core to be as short 

as possible. A 50 ohm impedance matching resistor was placed in between and in parallel with 

the amplifier and the core. This resistor stabilized the inductive circuit. 
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Figure 6: Ring Toroid 

 

 A sinusoidal waveform developed by the signal generator and magnified by the amplifier 

was applied to the primary of the 3F3 core. The resultant alternating magnetic field in the 

primary produced a voltage in the secondary. The average of the product of this current and 

voltage (over one cycle) is the Power Loss. Core Power Loss, CPL, is the average power loss per 

volume of the core as given in (Eqn 33). 

  

   Eqn 33 

  

 The CPL, (Eqn 33) used the secondary transformer open circuit voltage (V) and the 

current through the primary (I) as inputs. Vec is the effective volume of the core as determined by 

core data sheet. T is the period of one cycle of the waveform. Reference [22] explains that by 

measuring secondary open circuit voltage, the power loss due to both the secondary leakage 

inductance and winding resistance attributable to current flow are avoided in the measurements.  

A parasitic impedance path in parallel with the sense resistor was eliminated by connecting the 

secondary winding’s ground to common ground [22]. This path could potentially have caused 

CPL measurement error. The value of the sense resistor resistance affected both the accuracy of 

the measuring circuit as outlined in reference [23] and the preconditioning circuit quality as 

described in Section 2.2. These two confines drove the sensing resistor to the smallest resistance 

feasible while still maintaining a suitable sense resistor component power rating.    

 The value of the inductance of the core, L, and number of transformer turns, N, were 

determined using the following equations: 

   Eqn 34 

   Eqn 35 

 

   Eqn 36 
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c is the core permeability determined using the manufacturer’s data sheet. Ae and le are 

the effective core area and effective core length respectively. Vpk is the cores primary winding’s 

peak voltage and Bsat is the material saturation induction valuel.  is the core material’s current 

saturation value.  

The three unknowns in the above equations are N, Vpk and . An optimization balance of 

the three was conducted to ensure both Vpk and  could be accurately measured by the 

oscilloscope. 40 volts was chosen as the peak primary voltage. Reference [23] required the 

number of turns be kept to a minimum for sinusoidal current excitation.   

Since 12.33 is the number of turns required to reach Bsat for 700khertz sine-wave 

excitation in a TN23/14/7 core, the number was rounded to 13 turns. The HP 4192A LF 

Impedance Analyzer with a 16047A calibrated test fixture at 100khertz and 13 turns measured 

the TN23/14/7 core’s inductance as 228.8 µH. Several cores were used in this experiment 

although only the TN23/14/7 core is mentioned to prevent redundancy. The same method was 

used to figure out the turns ratio, Vpk and  for the other cores. 

Two 500Mhz 10 MΩ 10x P6139A Voltage Probes were chosen to make the secondary 

winding and sense resistor voltage measurements. Reference [23] required all voltage 

measurements probes to have sufficiently high input impedance as to not affect the core output 

voltage.  Both the probe’s large input impedance and high frequency bandwidth features 

provided ideal probe characteristics for this experiment. The probes were calibrated using the 

same 500 kHz sine-wave input signal. See Section 2.3 for a list of the equipment used in the 

experiment.    

In accordance with [22], the core was heated and maintained for 30 minutes to an 

experimental specified temperature. A heating plate, a cooling fan, and a large aluminum heat 

sink were used to the heating process. The 30 minute time length was used to ensure a 

temperature stable core. The Temp Fluke 52K/J Thermometer with a 1/10 decimal place 

accuracy was used for all temperature measurements. The Temp fluke was calibrated at 100 C. 

The Temp Fluke probe measured the top surface of the all the cores.  

2.2 Preconditioning Circuit  

Unfortunately, power ferrite materials are memory retaining materials. Memory is 

anytime a pervious condition affects the state of the current condition. CPL values can vary 

based on the residual net magnetic fields obtained from exposures to previous magnetic fields. 

References [22] and [23] explain that magnetic core preconditioning is used to eliminate these 

core memory effects. One commonly employed preconditioning method is to build a decaying 

resonant tank circuit that swings magnetic field in the core to zero [23].  Reference [23] requires 

the decay of two consecutive current peaks to not be less than .78%. In addition, these decreasing 

consecutive peaks shall not cause an appreciable increase in core temperature. The initial field 

strength of the current peak must also take the core well above the saturation knee in the 

magnetization curve [23].  

Figure 7 is the preconditioning circuit that was used during all CPL preconditioning 

measurements.  
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Figure 7: Preconditioning Circuit 

To achieve a no more than .78% maximum decrease in consecutive current peaks means 

the tank circuit must have a quality factor of 13 or higher. Therefore, the following two equations 

were used to determine the preconditioning peak voltage, Vpk,  and the preconditioning capacitor 

value, C. 

  Eqn 37 

  Eqn 38 

L is the value of the inductance of the 3F3 toroid core.  Lr is a 246.2 micro-henry 3F3 

gapped preconditioning inductor used to ensure that the saturation of the inductance L does not 

overly affect the decay waveform. A value close to the value of the 3F3 ferrite core was chosen.  

C is a 21 nano-farad mica charging capacitor. A mica capacitor was chosen due to the low 

parasitic resistance characteristics of this capacitor type. R is the value of the sensing resistor 

plus any parasitic resistance in the two inductors and the capacitor. Q is the quality factor of the 

tank circuit. Actual circuit values are given in Figure 6. Values were determined at 100 kHz 

using HP 4192A LF Impedance Analyzer with a 16047A calibrated test fixture. To ensure a 

quality above 13, 115 DC Vpk was used. Given the values of the design circuit, actual Q was 

determined to be approximately 38. 
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The resonant Frequency of the preconditioning circuit is 32.1 kilo-hertz as shown in 

Figure 7. Figure 7 was created using the PSIM program the above circuit values.    

 

 

Figure 9: FFT of Current in Preconditioning Circuit 

 

Figure 8 is the PSIM current decay result of charging the capacitor initially charged to 

115 VDC. The decay of the tank circuit is well within the two consecutive current peaks 

requirement set forth in reference [23].  

Figure 8: Preconditioning Circuit values 
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Figure 10: Current Decay of Preconditioning Circuit 

 Lr and Vpk were adjusted to meet the .78% decay constant for every core using the same 

procedure.  

 As a side note, even though every CPL measurement was taken using the preconditioning 

circuit as outlined in reference [21],[22] and [23], the value of this step in this experimentation is 

questionable. As soon as the excitation signal is applied to the circuit and during the averaging 

process, the core obtains memory from the previous frequency cycle. Unfortunately, this 

memory is present during the following cycle measurement even with the preconditioning step.   

2.3 Overall Circuit Design: Digitizing CPL and Preconditioning Circuit 

 

Since high and low frequencies CPL measurements were required, two amplifiers were 

used.  The HP 6827A amplifier was used for DC and 70-140 hertz measurements, while the 

Fluorocarbon Model 1040 Power Amplifier was used for 100-500 kHz power applications. The 

results of the measurements are in Section 3.1 and Sections 4.1-4.7. 

Figure 11 is a schematic of the CPL Digitizing and Preconditioning circuit. Contact push 

switches were installed to integrate or disconnect either the Preconditioning or Digitizing circuit 

while the other circuit was in use. For every measurement, a charged preconditioning capacitor 

would discharge through the resonant preconditioning tank circuit which included the primary 

3F3 core windings. The preconditioning circuit was then disconnected from the 3F3 toroid. The 

signal generator would be then turned on to produce a sinusoidal wave at a specified frequency 

and amplitude. This signal was then multiplied by the amplifier. The alternating signal from the 

amplifier was then fed through the primary winding of the core to a sense resistor. The 

oscilloscope measured the voltages of the sense resistor and the magnetic core’s secondary 

winding. The oscilloscope digitally averaged these two waveforms 500 times. The averaging was 

done to eliminate circuit noise. The two signals were then saved and converted into an 

instantaneous power per volume value by MATLAB code. The MATLAB code used can be 
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found in Appendix B. As stated in 2.1, temperature was measured and maintained at a specific 

specified value.  

As stated also in Section 2.1, several varying sized cores were used using Digitizing CPL 

measurements. The core sizes were varied to determine the effect of core size on CPL. The 

results of the measurements are in Section 3.3. 

 

The following is the parts inventory used in the apparatus.  

1. Signal Generator: Stanford Research System Model DS345 30 MHz Synthesized 

Time Generator 

2. HP 6827A Bipolar Power Supply/Amplifier 

3. Amplifier: Fluorocarbon Model 1040 Power Amplifier 55db 10 kHz-500 kHz 

4.  HP 6827A Bipolar Power Supply/Amplifier 

5. 50ohm: Vectronics Impedance 50ohms VSWR: 1:3:1 @ 150MHz Dissapation 

300Watts  

6. Oscilloscope: Tektronics TDS 3014B Four Channel Color Digital Oscilloscope 

7. Probes: Channel 1 & 2: P6139A Voltage Probes 500Mhz 8.0 pF 10 MΩ 10x 

8. Temperature Probe: Temp Fluke 52K/J Thermometer 

9. .404 Ω 2 Watt Sense Resistor 

 

 
2.4 Conductibility Apparatus and Measurement Procedure  
  

The second goal of this thesis was to measure the validity of using conductivity as an 

independent variable in several commonly used CPL empirical equations. To achieve this goal a 

method and an apparatus to measure conductivity was required. A discussion of the method and 

apparatus used is presented in this section. 

Conductivity, σ, with units Siemens per meter is a measure of a material’s ability to 

conduct current. For power ferrite materials, conductivity is considered to be frequency and 

Figure 11: Overall Circuit Design: Digitizing CPL and Preconditioning Circuit 



27 

 

temperature dependent [10] [24]. Since σ is a measure of a materials’ ability to conduct current, 

σ is normally measured by first determining the material’s resistance. Typically, a closed circuit 

known voltage is applied to the material and the resulting current through that material is 

measured. σ is proportional to the voltage over the current measurements, R. σ is given by Eqn 

39 [24].  

  Eqn 39 

  is the length of the material, A is the cross sectional area of the material that the current 

flows through and R is the resistance of that material.  

Three methods are typically used by engineers and scientist to determine σ. Since σ is 

dependent upon temperature and frequency, each method sets these dependent components to a 

predetermined value. The first method requires σ measurements to be taken at Direct Current 

(DC) values. The temperature of the material is heated to a specified temperature, either 25 C or 

the temperature of the power ferrite intended application. The second method is to measure σ at 

the same frequency and temperature used in the desired power ferrite application. This method 

requires complex mathematics which only the real portion of the resultant is used. The third 

method, which is the least accurate, is to use the manufactures’ data sheet for the conductivity 

measurement. Typically, only DC σ values at 25 C are provided.  An example of a manufacturer 

provided DC σ value is .5 S/m. This σ is the value provided 3F3 Ferroxcube data sheets for DC 

and 25 C and is the one used in this thesis [10].  

Just recently, research into the conductivity of power ferrites was conducted in reference 

[24]. The result of this experiment demonstrated that power ferrites conductivity is also 

dependent upon AC electric field strength. Reference [24] concluded that the possible 

combination of high frequencies and high electric fields creates a phenomenon called tunneling. 

His conclusion was that the high AC electric fields cause neighboring ferrite grains separated by 

thin insulating films to charge tunnel. The effects of charge tunneling result in non-linear σ 

measurements [24].   

To explore the results the experiment in reference [24], a test fixture based on the one 

used by [24] was built using a common power ferrite material, 3F3. Figure 12 is a schematic 

drawing of this apparatus.  
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Figure 12: Conductivity Apparatus (Note: It was noted afterwards that there is the potential for 

dc grounding issues with this connection, but the RF measurements appeared reasonable.) 

 

For AC signal generation the Stanford Research System Model DS345 was used. This 

produced a sinusoidal wave at a specified frequency and amplitude. This signal was then 

amplified using a Fluorcarbon Model 1040 Amplifier. The alternating signal is then fed through 

one end of a 3F3 PLT 58/38/4 material to a sense resistor. The 3F3 PLT 58/38/4 plate voltage 

and the voltage of the sense resistor are then measured by the oscilloscope. An oscilloscope 

common ground is obtained by connecting both oscilloscope probes to the same reference point. 

The current signal from the sense resistor is mathematically multiplied by negative one to 

compensate for probe arraignments. The oscilloscope averaged the two waveforms 500 times for 

noise elimination. The two signals are then converted into σ values by MATLAB code. This 

MATLAB code can be found in Appendix B.  A 50 ohm impedance matching resistor was 

placed in parallel and in-between the 3F3 PLT 58/38/4 plate and the amplifier.  

The conductivity apparatus has only a few slight modifications from the apparatus used 

in the CPL measurements. The modifications are the positions of the oscilloscope probes and the 

replacement of the 3F3 TN23/14/7 toroid with the 3F3 PLT 58/38/4 plate.  

In accordance with the procedure used in the CPL measurements, the core was heated 

and maintained for 30 minutes to a specified temperature. A heating plate, a cooling fan, and a 

large aluminum heat sink were used achieve and maintain the specified temperature. The 30 

minute time length was used to ensure a temperature stable material. The Temp Fluke 52K/J 

Thermometer with a 1/10 decimal place accuracy was used for all temperature measurements. 
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The Temp fluke was calibrated at 100 C. The Temp Fluke probe measured the top surface of the 

PLT 58/38/4. A thin layer of polyurethane tape was used to insulate the Temp Fluke probe from 

the 3F3 plate material. The tape eliminated erroneous temperature fluxuations noticed at 500 kHz 

by the Fluke. The Temp Fluke was used for both AC and DC σ measurements.  

Two frequencies, 100 and 500 kHz, and two temperatures, 44°C and 64°C, were used in 

the σ experiment to validate the results of  [24]. The results of the measurements are in Section 

3.2. An oscilloscope was used to capture the phase and magnitude of the current and voltage 

through the 3F3 PLT 58/38/4. Figure 10 is an example of the two captured waveforms. 

 

 

Figure 13: Current and Voltage of Conductivity of the plate 

 

 Since both the current and voltage signals have phase and magnitude, the complex 

conductivity was determined for each measured σ case. The mathematics below is the method 

used to determine the complex conductivity equation.  

      

  Eqn 40 

   

 The above equation is Amps Law in phasor mathematical form. |Vo | and |Io | are absolute 

magnitudes of the voltage and current through the plate respectively.  is the phase angle 

bracket. Φv and ΦI are the phase angle of the voltage and current signals. Figure 10 demonstrates 

that the plate acts capacitive with current leading voltage.  So, if  was assumed to equal 0,  

is then the phase shift time of between current and voltage, , divided by 360  times the period 

of the current signal, T.   

   Eqn 41 

 If Eqn 40 is rearranged solving for Z, the impedance of the plate is given by Eqn 42.  
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   Eqn 42 

R and jx are the real and imaginary component of plate Z, respectively.  σ is shown 

below using both Eqn 39 and this determined R value [24].  

 

   

 

A slight modification to σ apparatus used in the AC σ measurements was made to take 

DC σ measurements. The modification was the signal generator and Fluorcarbon Amplifier were 

replaced with the HP 6827A Bipolar Power Supply. The Bipolar Power Supply produced a DC 

voltage which was fed through one end of a 3F3 PLT 58/38/4 material to a sense resistor. Both 

the 3F3 PLT 58/38/4 plate voltage and the voltage of the sense resistor were measured by the 

oscilloscope. The two signals were then converted into σ values by MATLAB  code. This 

MATLAB  code can be found in Appendix B.  A 50 ohm impedance matching resistor was 

placed in parallel and in-between the 3F3 PLT 58/38/4 plate and the amplifier. In accordance 

with the procedure used in the CPL measurements, the core was heated and maintained for 30 

minutes to a specified temperature. A heating plate, a cooling fan, and a large aluminum heat 

sink were used to achieve and maintain the specified temperature. The 30 minute time length was 

used to ensure material temperature stability [23]. The Temp Fluke 52K/J Thermometer with a 

1/10 decimal place accuracy was used for all temperature measurements. The Temp Fluke probe 

measured the top surface of the PLT 58/38/4. Three temperatures were measured, 44°C, 55°C, 

and 63°C. The results of the measurements are in Section 3.2. 

It should be noted that, the range of electric fields used in both the AC and DC σ 

experiments was limited. Values above those in Figure 25 and 26 caused large rapid local 

temperature increases with only slight Electric Field experiment increase above the values used. 

To maintain an even material temperature gradient these electric fields values were all together 

avoided. 

 A potential problem in the σ measurement design apparatus is obtaining an accurate 

power ferrite material temperature.  Since σ is temperature dependent, the effects of σ by Electric 

Field strength could be masked by large material temperature gradients. For very thick materials, 

the value of surface temperature might not be indicative of the whole material. To minimize this 

potential path of σ measurement error, the plate used in this experiment was relatively thin. This 

ensured the local material temperature increases were measured at the surface and minimized the 

material temperature gradient.  

 

The following is a list of the equipment used in the AC and DC σ experiments: 

1. Signal Generator: Stanford Research System Model DS345 30Mhz Synthesized 

Time Generator 

2. HP 6827A Bipolar Power Supply/Amplifier 

3. Amplifier: Fluorocarbon Model 1040 Power Amplifier 55db 10khz-500kh 

4. 50Ω Sense Resistor: Vectronics Impedance 50ohms VSWR: 1:3:1 @ 150Mhz 

Dissipation 300Watts  

5. Oscilloscope: Tektronics TDS 3014B Four Channel Color Digital Oscilloscope 

6. Probes: Channel 1 & 2: P6139A Voltage Probes 500Mhz 8.0 pF 10Megaohm 10x 

7. Temperature Probe: Temp Fluke 52K/J Thermometer 
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8. .404 Ω 2 Watt Sense Resistor 
 

 

 

 

2.4 Capacitance and Conductivity vs Frequency using an Impedance Analyzer  
  

A 4192A LF 5 Hz -13MHz Hewlett Packard Impedance Analyzer with a 16047A test 

fixture and the 3F3 PLT 58/38/4 plate was used to verify the effects of frequency in power 

ferrites. The Hewlett Packard open and short calibration instruction was used for each frequency 

measurement. Frequencies ranging from 100 Hz to 1MHz were used in this experiment. A 28 C 

3F3 PLT 58/38/4 surface temperature was maintained for 30 minutes using heating plate, a 

cooling fan, and a large aluminum heat sink prior to the measurements. The Temp Fluke 52K/J 

Thermometer was used for the temperature measurements. Four parameters were analyzed with 

the impedance analyzer; capacitance (C), phase angle (Φ), real component of resistance (R), and 

impedance (Z). See Section 3.2 and Appendix B for the results of the measurements. 

 

 

Figure 14: Impedance Analyzer Setup 

2.5 Repetitive Digitizing Method for Primary Circuit Accuracy 

 

The repeatability of the Digitizing Method and preconditioning circuit was measured by 

taking three data sets with the same frequency and magnetic field. The data sets were taken in the 

course of a 2 day period. Data Set 1 was taken in the morning; Data Set 2 was taken 6 hours later 

and Data Set 3 was taken the following morning. The experimental equipment was started and 

then shutdown for each data set. This was done to define the experiment’s CPL variability. 

Figure 15 is the plot of the three TN23/14/7 core 100 kHz sinusoidal data sets. Each data set was 

measured with a TN23/14/7 core having a surface temperature of 50 C.  A 50 C plate 

temperature was maintained by a heating plate, a cooling fan, and a large aluminum heat sink for 
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30 minutes prior to measurements. The Temp Fluke 52K/J Thermometer was used for the 

temperature measurements. 

 

 

Figure 15: 3 Data Sets of 100 kHz Sinusoidal Signals for TN23/14/7 core 

Figure 16 provides the graphical CPL results of Figure 15’s Region 1. For the 

overlapping Region 1, the maximum error between the data sets was calculated to be 10.92% 

with a mean error of 6.54%. 
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Figure 16: Region 1 of 3 Data Sets of 100 kHz Sinusoidal Signals for TN23/14/7 core 

Figure 17 provides the graphical CPL results of Figure 15’s Region 2. For the 

overlapping Region 2, the maximum error between the three data sets was 7.55% with a mean 

error of 5.8%. 
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Figure 17: Region 2 of 3 Data Sets of 100 kHz Sinusoidal Signals for TN23/14/7 core 

The results of only a 5-7% experimental average deviation between the three data sets 

demonstrates that the CPL measuring apparatus can be used for CPL measurements and CPL 

equation comparisons.  

 

2.6 CPL Code Validation 

 

For confirmation purposes, the accuracy of the MATLAB program was validated against 

a known solution. Reference [25] pg 437 provided a solution to an average power problem using 

a signal voltage of  and a signal current

. The answer to the analytical average power problem as provided by [25] was 344.15 Watts 

for one period. If the above inputs were fed into the CPL MATLAB code, the resulted average 

power was 344.18 Watts for one period. The comparison of the two answers validates the CPL 

MATLAB code. The slight difference between these values can be contributed to the 

inaccuracies of using the trapezoidal method of integration in the MATLAB code. The following 

figure is a graph of the two input signals. For the MATLAB code used in the analysis see 

appendix B. 
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Figure 18: Validation of MATLAB Code Picture 

 

The following was the additional MATLAB code required to validate the CPL MATLAB 

program. 

 
w=377; 
T=2*pi()/w; 
tint=.0001; 
t=linspace(0,2*T,1/tint); 
V1=120*cos(377.*t+45*pi()/180); 
I1=10*cos(377.*t-10*pi()/180); 

  

 
2.7 Accuracy of Matrix and MATLAB Best Fit Method 
 

Two Least Square Best Fit programs were written to provide curve fitted coefficients of 

several CPL equations found in Section 1.6 using actual measured CPL data. One Least Square 

Best Fit program uses matrix methods to find a linear least square best fit for ln(A) and ln(B) for 

which α and β can be extracted. The other uses a MATLAB nonlinear fit subroutine (nlinfit) to 

directly find the best-fit parameters α and β for the nonlinear model. To validate these program’s 

accuracies, an equation with known coefficients was used to build a data set table which was fed 

into the two programs. The outputs of the programs were the programs best fitted coefficients to 
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that data set. A comparison of the output curve fitted coefficients to the known equation 

coefficients was used to provide program solution accuracy.  

The Excess Loss equation, (Eqn 43), modeled off of Bertotti’s model, (Eqn 9), was the 

equation used in the validation.  

     Eqn 43 

C has the value of .011579. Vo and β are curve fitted coefficients with values of 1 and 

1.5 respectfully.  Eqn 44 is Eqn 43 and the above known coefficient values.   

                                        Eqn 44 

 

5 frequencies, 100-500 kHz, and magnetic fluxes ranging from 70 -140 mT were used in 

conjunction with Eqn 44 to establish a Pex data set. Table 3 provides the data set used to 

determine the accuracy of the two methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Matrix and MATLAB  Validation Table 

C Vo Beta  

0.011579 1 1.5 

   
Freq 
(Htz) 

Bflux 
(mT) 

Pex 

(kW/m
3

) 
100000 70 6781.5838 

100000 80 8285.5063 

100000 90 9886.6199 

100000 100 11579.347 

100000 120 15221.447 

100000 140 19181.216 
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Table 4: Results of the MATLAB  and Matrix Method 

  
Unknowns 

  R2  Vo β 

Matrix .29997 0.998 1.5 

MATLAB  0 1.00 1.5 

The R
2
 value was obtained by the following equation, Eqn 45.  

  Eqn 45 

R
2
 is the Least Square Best Fit Residuals value. ydata is the actual measured CPL data. yfit is 

the Least Square Best Fit coefficients data.  

Table 4 shows that both evaluation methods are good approximations of the data set, but the 

MATLAB non-linear program provided a higher accuracy.  It is interesting that for an exact 

200000 70 19181.216 

200000 80 23434.951 

200000 90 27963.584 

200000 100 32751.34 

200000 120 43052.754 

300000 70 35238.143 

300000 80 43052.754 

300000 90 51372.384 

300000 100 60168.053 

300000 120 79092.959 

300000 140 99668.52 

500000 70 75820.412 
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input data set, both methods did not approximate the same coefficients. One reason the Matrix 

method might did not have provided an exact solution to the data set is the Matrix method 

requires a linear equation. The original equation used to calculate the data set was not linear. The 

equation becomes linear when the log of both sides is taken and the power coefficients are 

multiplied by the log of B and f. As shown in Table 4, the MATLAB code provided the best 

solution. Unfortunately, the drawback to using the MATLAB nonlinear fit method exclusively is 

that the MATLAB method required initial coefficient input estimates for the nonlinear fit. To 

overcome this drawback, every MATLAB code fit included a Matrix fit to establish initial 

coefficient guesses.   

The below is the Matrix Least Square Best Fit mathematics used in the above analysis. The 

MATLAB nonlinear fit program can be found in Appendix B. 

Eqn 43 is divided by the C constant in Eqn 45. Eqn 45 is the log of Eqn 46. Eqn 46 is 

converted into Eqn 47, a linear equation. Eqn 48 is the matrix from of Eqn 47. Eqn  49 is the 

Least Square Best Fit equation for x. Eqn 50 is the matrix form of x. 

 

 

   Eqn 46 

   Eqn 47 

   Eqn 48 

   Eqn 49  

   Eqn 50 

   Eqn 51 
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Section 3 Core Power Loss Equation Evaluation 

 
3.0 Results of Empirical Equation Component Verification 

 

Section 3 provides the results of several of the experiments explained in Section 2. These 

experiments were conducted to answer the following questions. 

1. What is the validity of the Hysteresis Loss Equation for low frequencies? 

2. Is CPL dependent upon core cross sectional area? 

3. Is conductivity, σ, a constant value in a cross electrical field in ferrites and 

should it be included as such in power ferrite CPL empirical formulas? 

Section 3 is broken into subsection accordingly. The reason these questions were 

investigated can be seen in Bertotti’s model, an equation increasingly used in CPL estimates. 

Bertotti’s model is divided into three component equations; a Hysteresis Loss equation (Eqn 5), a 

Classical Eddy Current Loss equation (Eqn 20) and an Excess Loss equation as given in the 

STPL equation (Eqn 12).  Bertotti’s model, (Eqn 9), is provided in its complete form by (Eqn 

52). 
 

 

   Eqn 52 

     

 For the Hysteresis Loss Equation, ( ), kh and β are the least square best fitted 

constants to actual data. f is frequency and  is the peak induction value. This equation is 

typically used to model CPL at low frequencies and is discussed in Section 3.1. The next two 

component equations in the above model are Classical Eddy Current and Excess Eddy Current 

Loss, Pcl and Pex. Two factors found in these equations were investigated; the area of the core, 

Ac, and conductivity, σ, terms. G is a unitless constant and Vo is another least square best fitted 

constant to actual CPL data and will be discussed in later sections. Ac and σ results are found in 

Section 3.2 and 3.3. 

 

3.1 The Validity of the Hysteresis Loss Equation for Low Frequencies 

  

The Hysteresis Loss equation, (Eqn 5),  

 
 

is the first term used in many STPL Equations. This equation has been tested and found 

valid for many materials, such as steel and iron, but the author was unable to find literature 

experimental evaluations of the Hysteresis Loss Equation for power ferrite materials. Therefore, 

a test fixture was built and a power ferrite 3F3 TN23/14/7 core was evaluated.  The procedure 

and apparatus are outlined in reference [13] and Section 2.3. Figure 19 is a picture of the test 

apparatus used. For the given equation two unknowns exist, kh and β. Both coefficients are 
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determined typically through CPL curve fitting [13]. [13] further explains that β is material 

dependent and usually ranges from 1.5 to 2 depending upon the material.  

In the following section the Hysteresis Loss equation is going to be modified slightly to 

look like the PLE equation, Eqn 4.  

           Hysteresis Loss Equation 

        Power Law Equation 

The only difference between the two equation is α, a curve fitted Least Square Best Fit 

(LSBF) constant. α is constrained to be one in for the Hysteresis Loss Equation and 

unconstrained in the PLE. This change was done to demonstrate that if the CPL data set is curve 

fitted to the PLE equation, the Hysteresis Loss equation is obtained. So the following figures and 

calculations are given with α even though it was set to one.   

 

 

Figure 19: Core Power Loss Test Fixture used in Hysteresis Loss Equation 

Reference [13] says that the area of the Hysteresis loop at very low frequencies is an 

accurate estimate for this STPL term, because for low frequencies, the power loss due to the 

other components in the STPL model is relatively zero. This makes Hysteresis losses dominant 

and measurable. The CPL due to Hysteresis Losses at low frequencies is then used to estimate 

the CPL at higher frequencies.   

CPL data was measured using a 70 Hertz sinusoidal waveform. The data was then used to 

curve fit eqn 5 coefficients, kh and β, using two Least Square Best Fit methods. 70 Hertz was 

used as the test frequency for convenience. It is low enough to provide a good CPL estimate and 

is sufficiently away from 60 Hertz power noise.    

Reference [13] explains that only 2 points are required for the best fit, but, for the sake of 

accuracy and conformation, 4 points were used. Typically kh and β solution are then applied to 

calculate the Hysteresis Component of STPL at higher frequencies for the ranges used in Power 

Ferrites [13]. Figure 20 is graph of the 70 Hertz data set.  
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Figure 20: Hysteresis Loss at 70 Hertz 

 The best fit solutions to the 70 hertz data points for the MATLAB  and Matrix 

method fits are given Table 5.  The Best Fit Least Square residuals, Eqn 45, were lower for the 

MATLAB program so they were used in the plot of Figure 20. Usually this is all the data that is 

required for the Hysteresis Loss equation calculation in STPL equations, but a larger data set 

which included another frequency was collected to determine the accuracy of the statement.   

 

Table 5: Residuals of Hysteresis Equation at 70 Hertz 

 
 

 
Unknowns 

Hysteresis Model (Ph) R2  α kh β 
MATLAB  .00024 1 .2787 2.6727 

Matrix .00054 1 .2999 2.7126 
 

To measure the accuracy of Eqn 5, a 140 Hertz CPL data set was also measured. By 

doubling the frequency, in the Eqn 5, the CPL should also double. The 140 hertz CPL data was 

compared to the CPL estimates obtained using Eqn 5 and the 70 hertz curve fit coefficients for 

MATLAB fit (kh=.2787, α=1 and β=2.6727) and Matrix fit (kh=.2999, α=1 and β=2.7126). 

Figure 21 is the results of the plot. The 70 and 140 actual CPL measured data is shown with the 

both estimated Least Square Best Fit (LSBF) CPL values.   
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Figure 21: 70 & 140 Hertz graph using 70 Hertz Best Fit Coefficients 

 Table 6 is the BFLS results of the 70 and 140 hertz data using only the 70 hertz BFLS 

coefficients. It is interesting that the results of the BFLS lowest residuals were not the MATLAB 

BFLS coefficients found in Table 5. The Matrix fit provided a slightly smaller residual value, 

Eqn 45.  

Table 6: Using the BFLS 70 hertz coefficients for 140 hertz estimates 

 
 

 
Unknowns 

Hysteresis Model (Ph) R2  α kh β 
MATLAB  .0602 1 .2787 2.6727 

Matrix .0599 1 .2999 2.7126 
 

To determine if using both the 70 and 140 hertz data provided a better fit then just the 70 

hertz data, a BFLS was conducted on the data set. The fitted results are given in Table 7 and 

Figure 22.  The BFLS residuals were lower for the 70 and 140 Hz data set then just for the 70 Hz 

data. However, this is not surprising. Typically, the greater the number of curve fitted data points 

used to fit data, the better the BFLS fit to that given data set. As demonstrated in Table 7, the 

Matrix method provided the best fit to the 70 and 140 hertz data using the Hysteresis Loss 

equation.   

 

 

 

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

B (mT) 

P
v
 (

k
W

/m
3
)

3F3 TN23/14/7 for 70 & 140 hertz kh = 0.2999  =2.7126  =1

 

 

Actual Data

Matrix Fit

Matlab Fit

Best fit Curve

140 Hz 

70 Hz 



43 

 

Table 7: BFSL 70 and 140 Hertz data for Hysteresis Loss Equation (α=1) 

 
 

 
Unknowns 

Hysteresis Loss Equation  
(Ph) R2  α kh β 

MATLAB  .0424 1 .1655 2.2535 

Matrix .0314 1 .2083 2.4438 
 

 

Figure 22: PLE for 70 and 140 Hertz with α constrained to 1  

  

Table 8 demonstrates the best fit PLE equation for the 70 and 140 hertz data has α equal 

to 1.014. Figure 22 and 23 are the plots of the BFLS fits using the PLE equation with either α 

constrained to 1 or α as a free variable. kh and β were both free variables in the analysis.  With 

the accuracy of the given project, it can be assumed α of 1.014 is approximately 1 and this 

analysis demonstrates that the Hysteresis Loss equation correlate wells to actual CPL 3F3 power 

ferrites data at low frequencies. 
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Table 8: BFSL 70 and 140 Hertz data for Hysteresis Loss Equation (α unconstrained) 

  
Unknowns 

Hysteresis Model (Ph) 
PLE Equation R2  kh β α 

MATLAB  .0397 1.556E-01 2.26 1.014 

Matrix .0537 3.244E-2 2.47 1.412 

 

 

 

Figure 23: PLE for 70 and 140 Hertz with α unconstrained 
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3.2 Conductivity in an Electrical Field 

 

 As explained in Section 2.4, conductivity, σ, performs an important role in many 

empirical equations and models. An example of this can be found in (Eqn 6), the Classical Eddy 

Current Equation (CECE), for cylindrical cores and sine-wave excitation.  

 

Since many Separation of Total Power (STPL) models include the CECE, a good 

estimate of σ used in the CECE is important to get an accurate CPL estimate. A list of the terms 

in the CECE can be found in section 1.5.  In several places in the literature ([5] and [26]), σ is 

said to be only temperature and frequency dependent, but an experiment conducted by reference 

[24] indicates that σ in power ferrites might also be electric field dependent. TheHis high electric 

field and frequency experimentations there produced very non-linear σ values. Reference [24] 

supposed that the possible combination of high frequencies and large electric fields produced a 

phenomenon called charge tunneling. See reference [24] for an in-depth explanation of this 

postulated charge tunneling phenomenon. His conclusion was that σ was AC electric field 

dependent.  

To validate [24] results, a test fixture similar to [24] fixture was built. Figure 9 is a 

schematic drawing of this apparatus. A description of the apparatus and the mathematics 

involved in calculating σ are found in Section 2.5.  

 

Figure 24: Conductivity Apparatus (Note: It was noted afterwards that there is the potential for 

dc grounding issues with this connection, but the RF measurements appeared reasonable.) 
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Varying 100 and 500 kHz sinusoidal voltages at two temperatures, 44°C and 64°C, were 

used in the experiment. Figure 25 is a plot of the results using σ and Electric Field as axes. σ is 

given by the following equation and Electric field is the voltage peak across the plate, Vo, 

divided by the length of the plate.  

 

 

As explained in Section 2.4,  is the length of the material, A is the cross sectional area of 

the material that the current flows through and R is the resistance of the structure.  

Figure 25 demonstrates that for a 3F3 Power Ferrite material and sine wave excitation, 

plate σ is clearly frequency dependent with a slight temperature dependency. This supported the 

above [5] and [26] assertions. Figure 25 also corroborates reference [24] conclusion that σ in 

power ferrite materials has electric field dependencies, since σ increased with rises in electric 

field strength. If σ was independent of electric field values, σ would have remained constant for 

increases in electric field strength.  
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Figure 25: AC Conductivity vs varying AC Electric Field 

   

If σ changes with changes in peak electric field strength as demonstrated by Figure 25, 

one can easily infer that σ also changes during the voltage fluctuations in every sine-wave half 

cycle. This would make CPL empirical equations models like CECE, which typically use 

constant DC σ values in their empirical estimation equations, both invalid and not accurate CPL 

estimation methods.  

Reference [24] demonstrated that σ varied during a condition of both high AC 

frequencies and large electric fields. So, DC σ experiments were performed to see if similar σ 

variations would still be present. It was interesting to see that comparable results occurred.   

 

 

Figure 26: DC Conductivity vs Electric Field 
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 The same apparatus was used, with the exception that the signal generator and amplifier 

were replaced with a DC amplifier. As seen in the AC σ experiment and in Figure 26, 

temperature affects complex σ values. It was also surprising that large DC electric fields also had 

variations of complex σ. 

   The results demonstrated in Figure 25 and 26 contradict several papers which explains 

that conductivity has a relatively constant value for varying electric fields. As the above figures 

show, the value of σ can fluctuate more than double to triple its lowest σ value depending upon 

the value of the electric field. This means CPL empirical equations that use σ, similar to the 

CECE, could also fluctuate 2 to 3 times depending upon which DC σ value was used in that 

equation.  

Section 2.4 gives three methods typically used to obtain the σ value used in many CPL 

empirical equations: 

1. to measure DC σ at a specified temperature, either 25 C or the temperature of the 

power ferrite intended application, 

2. to measure AC σ at the same frequency and temperature used in the desired power 

ferrite application, and 

3. to use the manufacturer’s provide DC σ value. This value is usually measured at 

25 C.  

The most likely accurate method to obtain σ is to find a method that determines σ with 

the most similar parameters as the one used in the power ferrite application. The further away 

from inteded use parameters, the more likely error will be present in the estimation. 

 

The last experiment conducted to measure σ was performed using 4192A LF 5 Hz -

13MHz Hewlett Packard Impedance Analyzer with a 16047A test fixture on the 3F3 plate 

material. This experiment was conducted to analyze a surprising result found making the AC σ 

measurement using the 3F3 PLT 58/38/4 material.  

As noticeable in Figure 27, which is an oscilloscope snap shot of the voltage and current 

through the 3F3 PLT 58/38/4 plate, the plate has a large capacitive value. As Figure 27 

demonstrates the current leads voltage. What makes this fascinating is that most Power Ferrites 

are used as inductors.  A possible reason to account the plate have a capacitive value might be 

due to the fact the 3F3 plate is made of Manganese Zinc, (MnZn). MnZn has a crystalline 

structure which is insulated by an isolating layer that creates pockets of MnZn throughout the 

material [26]. Ferroxcube, the manufacturer of 3F3, gives the size of MnZn grain between 10um 

to 20um. [26] The boundary between the grains is estimated to about ½ that value. The small 

pockets of ferrite material act like small capacitive plates separated by electrolytic boundary 

layers.  
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Figure 27: Voltage and Current of the 3F3 PLT 48/38/4 σ measurements 

  

 The frequencies used in this experiment ranged from 100 Hz to 1 MHz. The Surface 

temperature of the 3F3 PLT 58/38/4 plate was maintained at 28 C. Four parameters were 

measured from the impedance analyzer; capacitance (C), phase angle (Φ), real component of 

resistance (R), and impedance (Z). See section 7 for a table of the results. 

Figure 28 is a graph of capacitance versus frequency.  
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Figure 28: 3F3 Plate Capacitance vs Freq 

   

 Figure 29 is the phase versus frequency. At 100 hHz the measured phase angle between 

current and voltage for the 3F3 TN23/14/7 core was 57 °. This correlates well with the 62.4° 
impedance phase angle measured at 100 kHz by the impedance analyzer.    
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Figure 29: Phase Angle vs Freq 

 

Figure 30: Resistance vs Freq for 3F3 Plate Measurement 

3.3 Core Area as a factor in CPL per volume Equations 

  
As emphasized in Section 2.0, there are many CPL empirical equations that use cross-

sectional core area, (AC), as an empirical estimation equation factor. For example, Bertotti’s 

model uses Ac for two if its component equations, the Classical Eddy Current Loss and Excess 

Power Loss equations, as demonstrated in Eqn 52.  
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 One goal of this research thesis was to determine if CPL per volume is dependent upon 

core area for power ferrites. Numerous experimental literature exists on this topic for a wide 

range of materials, but very little was found using power ferrite materials.   

 In this experiment, six 3F3 toroid cores were analyzed with AC ranging from 3 to 186 

mm
2
.  An in-depth explanation of the test procedure and the CPL test apparatus used for this 

experiment is located in Section 2.1.  AC for a perfect rectangular cross-section toroid would be 

the multiplication of the height of the core (h) and width of the ferrite material (w). Fig 5 is an 

example of the these dimensions used in AC calculations.  

  

 

Figure 31: Rectangular Toroid Figure 

 Unfortunately, the cores used in the experiment were not perfect rectangular toroids. The 

manufacturer rounds the edges of the core using a tumbler. To account for difference due to 

rounded edges, the effective area (Ae) provided by Ferroxcube’s data sheets were used to 

determine the given AC  (Ferroxcube is the manufacturer of the 3F3 cores).   

As stated above, AC varied more than 60 times the smallest to the largest core. This is 

demonstrated in Figure 32. Figure 32 is an approximate visual demonstration of size difference 

between the largest (TX 50/30/19) and smallest (TC 6.3/3.8/2.5) core. A list of the 6 3F3 core’s 

and their respective AC can be found in Table 9. 

 

Figure 32: Core size visual difference 
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Table 9: Effective Core Area of Cores used 

3F3 Core 
Effective Area 

(mm2) 

TC  6.3/3.8/2.5 3.06 

TX  13/7.9/6.4 14.1 

TN  23/14/7 30.9 

TN  23/14/7 30.9 

TX  36/23/15 97.5 

TX  50/30/19 186 

 

Several of the questions typically used establish the accuracy of CPL core size 

comparisons are:  

 

1. Are the cores made from the same material? 

2. Are the cores from the same manufacturer lot? 

3. Were they measured using the same input parameters? 

4. Were they measured using the same testing apparatus and by an identical 

process? 

 

To satisfy these questions, 6 varying sized Ferroxcube 3F3 cores were obtained. They 

were made of the same material but were not known to be from the same lot. Same lot means 

that the cores were cut from the same bulk material. Regrettably, when a bulk material is 

manufactured, small intrinsic material variations occur that differentiates that that bulk material 

from the same type of material manufactured by the exact same process. These lot specific 

intrinsic variations can also vary the overall CPL results when compared to another lot. Usually, 

these CPL variations are eliminated in CPL core size comparison by using cores from the same 

lot or by just using one core that is machined smaller to make several smaller cores [8]. 

Unfortunately, these two options were not available for this experiment. 3F3 material is very 

brittle and did not machine well and it is very difficult to obtain several varying size same lot 

cores unless an expensive special manufacture order is conducted.   Only two of the cores were 

from the same lot: the two TN23/14/7 cores.  

The reason why two same lot same size cores were measured was to determine if that 

even same-lot same-sized cores had CPL variability. Figure 33 and Table 10 provides the results 

of this CPL variability experiment.  
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Figure 33: 3F3 TN 23/14/7 same size core lot Variability 

Table 10 provides the average maximum error between the two same lot TN 23/14/7 

cores for the same overlapping 100 and 500 kHz regions.  

Table 10: Error for same lot same size cores 

 Frequency  
(kHz) 

Average 
Error  

Max 
Error 

100 6.90% 13.40% 

500  1.40% 3.78% 

 

Since, the average error determined at 100 kHz between the same lot cores was 6.9% and 

the Section 2.5 average error between same size different lot core data sets was 6.54%, this 

experiment demonstrates the same lot cores might have greater variation then different lot cores.  

As explained above, to minimize the potential errors that arise from comparing CPL from 

different lots, five different sized cores from unique lots cores were used. By using multiple lots 

and sizes, the overall chances of lot variability on one particular lot from affecting the general 

overall core size CPL trends is minimized.      

Figure 34 is a plot of the 6 cores for both 100 and 500 kHz frequency data sets. The most 

interesting result of Figure 34 is there does not seem to be a clear trend in the data. The smallest 

core, TC6.3/3.8/2.5, actually had the highest loss. This is surprising if Bertotti’s model (Eqn 52) 
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is correct. The expected lowest CPL core using Eqn 52 would be the core with the smallest area, 

since AC is found twice in the equation with terms proportional to Ac and Ac
1/2

. 

 

 

Figure 34: Core Area effects on Core Loss 

Figure 35 provides the CPL loss data of Figure 34’s for just 100 kHz. One of the 

TN23/14/7 cores was removed to provide a clearer picture of the trends. The removal of this core 

did not change the data trends. The graph was then is broken into overlapping curve regions. 

Only overlapping actual experimental data points were compared in the experiment to eliminate 

the potential error that experimental estimates could give. 
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Figure 35: Core Area CPL Losses for 100 khz 

 Region 1 in Figure 35 envelops 4 cores and Region 2 encases 3. Table 11 and 12 are the 

rankings of the cores in each region from smallest to largest AC and their respective ranking of 

their Total CPL from lowest to highest (Ranking was ordered by figure trends, so the core with 

Lowest CPL trend had CPL rank of 1).  Contrary to Classical Eddy Current Loss theory, for 

Region 1 the largest CPL loss was the smallest core and the second lowest loss core was the 

largest core.  For Region 2 of Figure 35, the medium sized AC  had the lowest CPL. 

 

   Table 11: 100 kHz Region 1 Core Loss Core Comparison 

100 
(khz) 

Core  
 

AC 

(mm2) 
Lowest 

 CPL  

Region 1 

TC6.3/3.8/2.5 3.06 4 

TX13/7.9/6.4 14.1 1 

TN23/23/7 30.9 3 

TX36/23/15 97.5 2 

1

10

100

1000

10 60 110 160 210

P
v 

(k
W

/m
3

)

B (mT)

Pv vs B at 100 kHz

TC6.3/3.8/2.5-Ae (3.06)

TX13/7.9/6.4-Ae (14.1)

TN23/14/7-Ae (30.9)

TX36/23/15-Ae (97.5)

TX50/30/19-Ae (186)

Region 1 

Region 2 

100 kHz 



57 

 

Table 12: 100 kHz Region 2 Core Loss Core Comparison 

100 
(khz) Core 

Core Size 
(mm2) 

Lowest  
CPL 

Region 
2 

TN23/23/7 30.9 2 

TX36/23/15 97.5 1 

TX50/30/19 186 3 

 

Figure 36 provides the results of Figure 34’s CPL loss data for just 500 kHz. As in Figure 

35, one of the TN23/14/7 cores was removed to provide a clearer picture of the trends. The 

removal of this core did not change the data trends. The graph is broken into overlapping curve 

regions. Only the overlapping experimental data points were compared in the experiment to 

eliminate the potential error that experimental estimates could give. 
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Figure 36: Core Area CPL Losses for 500 khz 

  

Region 1 and 2 in Figure 35 envelops 3 cores and Region 3 only encases 2. Even at 500 

kHz no apparent trend exists for the 6 core data set. Table 13, 14, 15 provides the different CPL 

overlapping regions for several different sized cores at 500 kHz.  For Region 1, Table 9 

demonstrates the smallest core had the largest loss and the second largest core had the lowest 

losses. Region 2 medium size core also had the largest loss. Only for Region 3 did the smallest 

sized core actually have the lowest CPL loss.  
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Table 13: 500 kHz Region 1 Core Loss Core Comparison 

500 
(khz) Core 

Core Size 
(mm2) 

Lowest  
CPL 

Region 
1 

TC6.3/3.8/2.5 3.06 3 

TX13/7.9/6.4 14.1 1 

TN23/23/7 30.9 2 

 

Table 14: 500 kHz Region 2 Core Loss Core Comparison 

500 
(khz) Core 

Core Size 
(mm2) 

Lowest  
CPL 

Region 
2 

TX13/7.9/6.4 14.1 1 

TN23/23/7 30.9 3 

TX36/23/15 97.5 2 

 

Table 15: 500 kHz Region 3 Core Loss Core Comparison 

500 
(khz) Core 

Core Size 
(mm2) 

Lowest  
CPL 

Region 
3 

TX36/23/15 97.5 1 

TX50/30/19 186 2 

 

The conclusion that can be drawn from the data of figures 35 and 36 is that CPL is 

independent of AC , or at least that AC is not a dominant factor in CPL calculations for 3F3 power 

ferrite material. What needs to be emphasized is that if core area were a significant consideration 

then loss per volume would have varied greatly among the cores, since there is a factor of 60 

area variation between the cores.  

Three articles were found that discussed Power Ferrite core area versus CPL.  Two of the 

references supported this author’s claim that core area might not be a dominant CPL factor in 

Power Ferrites([5] and [8]), and one contradicted it [17].   

 The author of [5] explains that when a material is divided into small insulated electrical 

grain regions, the CPL per volume is more affected by the size of the grain and insulation layer 

around that grain then the overall dimension of the ferrite core. He further explains that for 

ferrite materials with high amplitude magnetic loss, the CPL per volume is independent of ferrite 

core dimension [5].  

  The above statement, about independence of loss per volume from core size, was 

experimentally verified by the authors of [8]. Their experiment systematically decreased the size 

of two MnZn ferrite cores through machining. The difference between the two cores was the 

amount of insulator in the cores. The first core, with little insulator, had low resistivity and a high 

value of permeability. Both properties are not typically found in high frequency applications [8]. 

In contrast, the second core, with more insulator, had ideal high frequency properties: high 

resistivity and low permeability. The experiment was conducted at two frequencies, 100 and 200 

kHz. Table 16 provides these values. The experimental results demonstrated that CPL of the core 
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with little insulator was dependent upon core dimension, while the CPL of the more insulator 

core was not. This result supports that insulation layer thickness has an effect on CPL values.  

 The authors of [17] conducted CPL measurements using two different sized, but same 

MnZn material, power ferrite cores. The lot of the cores was not mentioned. Their core intrinsic 

material of choice also had a high resistivity and a low permeability, both ideal power ferrite 

application materials [8]. Table 16 provides these values. The cores were measured using 10 to 

1000 kHz. Their conclusion did not agree with those of [8]. For their data set, there seemed to be 

a correlation of core size and CPL for cores with the same characteristics of the second core used 

in [8]. Their conclusion is that a portion of Power Ferrites CPL is due to the displacement of 

current distributions in the core. Different shaped and size cores would change this distribution 

[17].  

 Table 16 demonstrates that the cores chosen in this thesis resemble both the second core 

used in [8] and both cores used in [27]. The results of this thesis did not show a trend in core size 

to CPL, which was supported by [5] and [8]. The difference in the testing of the cores, might be a 

factor in the differing results of the between this thesis, [8] and [17].  

            

Table 16: Core Resistivity and Permeability values 

Core used in experiment 
@DC 

(Ωm) r

[8]         MnZn First Core (Little insulator)  0.15 10000 

[8]         MnZn Second Core (More insulator) 6.5 2300 

[Thesis]  MnZn 3F3 Ferrite Core 8 3000 

[17]         MnZn Both Cores 10 3080 
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Section 4 CPL Data Fitting and Statistics Analysis 

 
 Section 4 provides the Least Square Best Fit (LSBF) statistical analysis for the CPL 

estimation equations listed in Section 1.6. As stated in Section 2.7, two mathematic LSBF methods 

were used for this analysis, a matrix and a MATLAB non-linear fit. Section 4 is broken into 

subsections, one for each equation. Each subsection includes the matrix math used to obtain both 

the LSBF curve fitted coefficients and the LSBF residuals value. The MATLAB code used to 

calculate the coefficients and LSBF residuals (R
2
)  in each of the following subsections can be 

found in Appendix B.  For each equation, the curve fitted coefficients of the lowest LSBF residual 

method were used in the plot of the equation. The method, the procedure and CPL measuring 

apparatus used to obtain the CPL data set used for the LSBF, is located in Section 2.3. The R
2
 were 

calculated using Eqn 45.  

  

As stated in Section 2.7, R
2
 is the Least Square Best Fit Residuals value. ydata is the actual 

measured CPL data. yfit is results of using LSBF coefficient data.  

 

4.1 Steinmetz Equation  
 

Steinmetz proposed an equation in 1892 for the loss of energy due to hysteresis loss for 

machine steel. The equation had the form   [7]. is the power loss per unit volume,  is 

the maximum peak flux amplitude, β and k are curve-fitted coefficients of actual experimental 

data. For Steinmetz’s applications, this equation was a good solution for estimating CPL.  

Unfortunately, this equation is not robust enough to account for the CPL dependent frequency 

component. Power Ferrites are typically used frequencies in the range of 100 kHz to a few MHz, 

while Steinmetz experimentation used only low frequency sine wave data (50-200 hertz) for his k 

and β coefficients estimate [7].  

To use Steinmetz Equation, the user has two options. The user can either find the k and β 

coefficients by obtaining them through the manufacturer’s data sheet, if available, or measure these 

coefficients through actual experiment.  

 The accuracy of Steinmetz Equation is only as accurate as the data set used to obtain these 

coefficients. For example, the R
2
 are extremely low, i.e. accurate, for the LSBF curve fit to actual 

CPL data taken at 70 Hz or 140 Hz, but not when the combined data set of 70 and 140 Hz is used 

for the LSBF. Table 17 provides these R
2
 values.  

Table 17: Steinmetz Equation 

  
Unknowns 

Steinmetz Equation R2  k β 

Low Freq (70 & 140) Matrix .059 18.89 2.38   

Low Freq (70) MATLAB  .00006 19.68 2.67 

Low Freq (140) MATLAB  .00098 22.77 2.24 
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Figure 37 is a plot of actual 70 Hertz CPL data and the LSBF curve fitted solution to that 

data. 

 

Figure 37: Hysteresis Loss Equation for 70 Hertz 

The differences between R
2
 between the 70 Hz data and the 70 and 140 Hz combined data 

is due to Steinmetz equation (not accounting for the frequency dependency of CPL measurements). 

Figure 38 is a plot of the LSBF solution to the combined 70 and 140 Hz CPL data set.  

 

Figure 38: Low Frequency Core Power Loss for TN 23/14/7 
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 The star dotted line is the LBFS solution to the actual CPL data at 70 and 140 hertz. Due to 

the input data sets having two different frequencies, the Steinmetz equation splits the difference 

between the two.  As Table 17 demonstrates, the Steinmetz equation can only accurately 

approximate CPL if the frequency of the data set used to obtain the coefficients are the same as the 

frequency of the intended estimate.  

 Figure 39 is the Steinmetz Equation BFLS solution to the 3F3 TN23/17/4 100-500 kHz 

data set. As was shown in Figure 38, Steinmetz Equation still provided only a single line solution 

to the data set.  

 

 

Figure 39: High Freq (100-500kHz) Steinmetz Equation 

 

The LSBF R
2
 for the TN23/14/7 core for the 100 to 500 kHz data set is in Table 18. 

 

Table 18: R
2
 and LSBF Steinmetz Equation coefficients at High Freq 

  
Unknowns 

Steinmetz Equation R2  k β 

High Freq (100- 500) 1956.5 5909.19 1.0587 

 
The Matrix method was evaluated using the following equations. Using logarithms the 

Steinmetz Equation can be broken down into the form y= C+Dx. This is a linear equation, which 
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can be easily evaluated using LSBF matrix mathematics.  The matrix math used in this CPL 

equation can found in reference [27].  

 

 

The matrix equivalent form of the above equation follows.  

 = b 

 

      

 

 See Appendix B for the program used to calculate the MATLAB non linear solution.  
 

 

 

 

 
 
4.2 Power Law Equation (PLE) 

 

As shown in Section 1.6 and 4.1, for an equation to accurately estimate Power Ferrite CPLs 

over a broad range, that equation needs to have both a frequency and magnetic field term. The 

Power Law Equation is one such equation. Currently, the Power Law Equation (PLE) is of 

standard equation used by manufacturers, scientist and engineers. The simplicity of this approach 

is the parameters required for the equation can be found in manufacturer’s material data sheets. 

Unlike several of the other empirical equations, this equation does not require the user to collect 

experimental data. Note that this equation does not account for possible variations in loss density, 

with core cross-sectional area.  

 The PLE (Eqn 5) has the following form: 

 
is the power loss per unit volume,  is the maximum peak flux amplitude, f is the 

frequency, and α, β and C1 are curve-fitted coefficients of actual experimental data. 
 The 3F3 TN23/14/7 100-500 kHz data set was used to determine the PLE accuracy when 

compared to actual CPL core data. Figure 40 provides the LSBF curve fitted coefficients, C1, α and 

β, for the PLE.  
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Figure 40: CPL graph using MATLAB Method 

 

Table 19 gives the R
2
 for both Matrix and MATLAB method. For this equation, the 

MATLAB method provided the lowest LSBF R
2
 values. 

Table 19: Residuals for High Freq using the Power Law Equation 

  
Unknowns 

PLE 
 100-500 (kHz) R

2
  C1 α β 

MATLAB  77.23 8.24E-04 1.51 2.41 
Matrix 110.52 3.034E-4 1.593 2.409 

 

Since Ferroxcube, the 3F3 manufacturer, provided the PLE curve fitted coefficients for 

three ranges: 100-300 kHz, 300-500 kHz, and 500-1000 kHz; the 100-500 kHz data set used in 

Figure 40 was broken into two smaller similar data sets: 100-300 kHz and 300-500 kHz. The 

LSBF curve fitted coefficients and the resulting R
2
 from these two data sets are located in Table 20 

and 21. The lowest R
2
 curve fitted coefficients for the data sets were plotted in Figure 41 and 42.    
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Figure 41: PLE LSBF for the 100-300 (kHz) data 

 

Table 20: Residual data for 100-300 (kHz) PLE 

  
Unknowns 

PLE 
100-300 (kHz) R2  C α β 

Matrix 20.83 9.76E-4 2.523 1.51 
MATLAB  21.531 1.02E-3 2.467 1.50 
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Figure 42: PLE LSBF for the 300-500 (kHz) data 

 

Table 21: Residual data for 300-500 (kHz) PLE 

  
Unknowns 

PLE 
300-500 (kHz) R2  C α β 

Matrix 27.02 7.3E-6 2.33 1.87 
MATLAB  5.73 1.61E-5 2.46 1.83 

 

 

Since the R
2
 found in Table 20 and 21 were lower than those for the complete 100-500 kHz 

data set in Table 19, one can postulate that the PLE equation provides a good but not perfect 

estimate of all the CPL loss mechanisms over a broad range.    

The accuracy of Ferroxcube’s provided PLE curve fitted coefficients found in [12] were 

evaluated against the coefficients determined in Table 20 and 21.  The results are found in Table 

22.  
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Table 22: Residuals of PLE for both Manufacturer Data and Estimated 

   
Unknowns 

Power Core Loss  (Pv) R2  C α β 

100-300 kHz 
Ferroxcube (Table 1) 233.8 2.50E-04 1.63 2.45 

Matrix (Table 20) 20.83 9.76E-4 1.51 2.52 

300-500 kHz 
Ferroxcube (Table 1) 591.48 2.10E-05 1.8 2.5 

MATLAB (Table 21) 5.724 1.02E-5 2.46 1.86 
 

The Ferroxcube’s coefficients in Table 1 and 20 were collected by the manufacturer at a 

core temperature of 100 C. Since CPL are temperature dependent, Ferroxcube provides a 

temperature correction factor for cores not at 100 C in [12].  The Ferroxcube’s PLE equation was 

adjusted to 50 C to allow the experimental results to accurately be compared to those of the 

manufacturer. Figure 43 and 44 is a plot of the Ferroxcube’s estimate to actual CPL 3F3 

TN23/14/7 data.  

 

Figure 43: PLE 100-300 kHz Data for Ferroxcube Estimates and Best Fit Estimates 
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Figure 44: PLE 300-500 kHz Data for Ferroxcube Estimates and Best Fit Estimates 

Table 22 and Figures 43 and 44 demonstrate that the PLE coefficients determined by 

experiment are a better fit to the actual measured data then the manufacturer provided coefficients. 

This is not a surprise since collected and then fitted data will always be more accurate to not fitted 

data.  The differences between actual experimental data from this thesis and manufacturer data 

(while not large) could be due to different test apparatus and or methods for evaluation. 

One of the difficulties in using the manufactured provided PLE coefficient equations is 

trying to understand which range or equation to use. For example, Table 2 provides two equations 

for PLE at 300 kHz.  Normally, if the intended core application is above 300 kHz, the user would 

choose the 300-500 kHz range, and if below, the 100-300 kHz values would be used. The problem 

is deciding which equation to use if the application is at 300 kHz.  

Figure 45 provides a plot of this situation. It shows that for 300 kHz data, the Ferroxcube 

LSBF coefficients for 100-300 kHz over estimates the actual 3F3 TN23/17/4 300 kHz CPL data 

while the Ferroxcube 300-500 kHz provided coefficient under estimates it.  
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Figure 45: 100-300 and 300-500 kHz 3F3 Ferroxcube equations vs 300 kHz data 

 The Matrix method was evaluated using the following equations. PLE can be evaluated 

with logarithms in the form y= C+Dx+Ez. This is a linear equation, which can be easily evaluated 

using LSBF matrix mathematics.  The matrix math used in this CPL equation can found in 

reference [27].  

 

The matrix equivalent form of the above equation follows.  

 

 

      

 

 See Appendix B for the program used to calculate the MATLAB non linear solution.  
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4.3 Hysteresis Loss Equation  

 

 

The Hysteresis Loss Equation is given by Eqn 5, 

 

See Section 2.1 for a low frequency analysis of the given equation.  

 

Figure 46 is a plot of the LSBF of the Hysteresis Loss equation for high frequency (100-

500 kHz) data.  Table 23 provides the LSBF curve fitted coefficients and the R2 for the Hysteresis 

Loss Equation at 100-500 kHz. Further, the 100-500 kHz data set is broken into 100-300 and 300-

500 kHz data sets.   

 

 

Figure 46: 100-500 BFLS for Hysteresis Loss Equation 
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Table 23: The Hysteresis Loss Equation LSBF for 100-300 kHz and 300-500 kHz 

 
 

 
Unknowns 

Hysteresis Loss 
Equation R2 α kh β 

MATLAB 100-500 kHz 1549.9 1 .1588 1.85 

Matrix 100-500 kHz 1175.1 1 .2087 2.09 

MATLAB   100-300 kHz 917.1 1 .1801 1.94 

Matrix       100-300 kHz 651.51 1 .3266 2.368 

MATLAB   300-500 kHz 208.8 1 .3025 2.11 

Matrix       300-500 kHz 184.8 1 .3291 2.17 

 

The above analysis was LSBF fitting of kh and β in the Hysteresis Loss Equation to the 

100-500 kHz data set. Table 23 provides the R
2
 for these plots. R

2
 were calculated using the 

following equation. 

 

R
2
 is the Least Square Best Fit Residuals value. ydata is the actual measured CPL data. yfit is the 

Least Square Best Fit coefficients.  

The following analysis used Table 7’s Matrix LSBF Hysteresis Loss Equation coefficients 

determined by the best fit of the 70 and 140 Hz data for high frequencies, 100-500 kHz. This was 

done to test the accuracy of CPL models like Bertotti’s Model, that use Hysteresis Loss 

coefficients obtained at low frequencies to extrapolate CPL estimates at high frequencies. Figure 

47, 48, and 49 are plots of these Hysteresis Loss Equation coefficients for frequencies ranging 

from 100 to 500 kHz plotted against actual measured CPL data.   
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Figure 47: 100-500 kHz Using the Hysteresis Loss Equation Coefficients from 70 & 140 Hz data 
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Figure 48: 100-300 kHz using the Hysteresis Loss Equation Coefficients from 70 & 140 Hz data 
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Figure 49: 300-500 kHz using the Hysteresis Loss Equation Coefficients from 70 & 140 Hz data 

 

 

 

Table 24: LSBF of Low Freq Coefficients at 100-500 kHz 

 
 

 
Unknowns 

Hysteresis Loss 
Equation   R2  α kh β 
100-500 kHz 6842.9 1 .2083 2.4438 

100-300 kHz 3699.4 1 .2083 2.4438 

300-500 kHz 4749.2 1 .2083 2.4438 

 

 

Table 24 provides the R
2
 for these plots. The R

2
 for 100-300 and the 300-500 kHz were 

determined by using these data sets separately. The R
2
 were calculated using the following 

equation. 
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R
2
 is the Least Square Best Fit Residuals value. ydata is the actual measured CPL data. yfit is the 

LSBF coefficients found in Table 7 for the data fit of the 70 & 140 Hz data set.  

 

The following is the Matrix method used in both Section 2.1 and this section. 

 

 

 

 

      

 

 

See Appendix B for the program used to calculate the MATLAB non linear solution.  

 

4.4 Classical Eddy Current Equation (CECE) 
 

As described in Section 1.7.2, the Classical Eddy Current Loss Equation is derived using 

two assumptions; homogenous material is used and there is a uniform driving magnetic field 

across the core. The combination of these assumptions leads to a single eddy current loss in the 

material. As discussed in Section 1.7.2, this is an ideal material and not representative of actual 

power ferrite materials. Classical Eddy Current Loss Equation (Eqn 31) has the form:  

 

 

 

For the square toroid, similar to those used in this thesis, the approximate equation for AC is 

(Eqn 30).  

 

See Section 1.7.2 for a discussion of terms in the above Classical Eddy Current Loss 

Equation. To measure the accuracy of this equation, actual CPL data was measured using a 3F3 

TN23/14/7 core and then compared to the above equation. The resultant R
2
 is found in Table 25. 

The R
2
 was calculated using the following equation. 
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R
2
 is the Least Square Best Fit Residuals value. ydata is the actual measured CPL data. yfit is the 

value obtained by using Equation 31 for the TN 23/17/4 3F3 Core.  

Figure 28 is actual PCL data plot alongside the Classical Eddy Current Loss equation for 

that data set. 

Table 25: Residuals for Classical Eddy Current Equation 

Eddy Current Loss 
Equation  R2  
MATLAB  5548.29 

 

 

Figure 50: Classical Eddy Current Loss Equation for 100-500 kHz Data 
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4.5 Separation of Total Power Losses Models 

 The Separation of Total Power Losses (STPL) model is currently being used by several 

references as explained in Section 1.7. Several forms of this model exist, but the general form is 

(Eqn 12), .  See Section 1.7 for an explanation of this equation. The next 

several subsections will be using this or some form of this equation.  

4.5.1 Bertotti’s Model  

The first STPL model to be analyzed is the Bertotti’s Model (Eqn 9).  

 

 As it is easily shown, (Eqn 9) can be broken into (Eqn 12) subdivisions. 

1.                       (Eqn 5) 

2.                    (Eqn 6) 

Where Ac is (Eqn 30) for rectangular toroid given by  

 (Eqn 6) 

3.      Eqn 53 

Ph is the Hysteresis Loss Equation and a discussion of this equation can be found in both 

Sect 2.1 and 4.3. This equation is typically used to model CPL at low frequencies and is discussed 

in Section 3.1. Pcl is the Classical Eddy Current equation and is discussed in Sect 1.7.2 and 4.4.  

Pex is the Excess Eddy Current Loss term discussed in Sect 1.7 and 1.7.3.  σ is conductivity of the 

material. G is a unit-less constant with value of .1356. S is the cross-sectional area of the core. Vo is 

a curve fitted coefficient.  

 Ph and Pcl have already been calculated and analyzed for 3F3 TN 23/17/4 in pervious 

sections and will not be discussed. However, these two STPL term losses will be used in 

conjunction with (Eqn 32) to determine Pex in Sect 4.5.1.1.   
In [9], Bertotti explains his Excess Eddy Current Loss (EECL) is given by (Eqn 53) and the 

Vo in that equation is a curve fitted coefficient using Pex CPL data points determined by using (Eqn 

54).  

              Eqn 54 

For Bertotti’s Model to be used, only three experimental CPL points are required. Two low 

frequency points are essential for the kh and β curve fit and one high frequency Pv points are 

needed to solve for Vo [9]. The kh and β found in Sect 4.3 using the 70 and 140 Hz data and the the 
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Classical Eddy Current Equation determined in Section 4.4 were used.  The 100 kHz 3F3 TN 

23/14/7 data set was applied in (Eqn 54) to calculate Pex.  

 Unfortunately, as discussed in Sect 3.2, σ is not constant for changes in magnetic field, 

temperature and frequency. Consequently, determining what value of σ to use in Eqn 54 was very 

difficult. Since many CPL model equations use σ determined at 25°C for DC conditions, 

Ferroxcube’s provided 25°C DC σ value, (.5 S/m), was utilized. 

 Figure 51 is a plot of the Pv, Ph, Pcl and Pex terms in the (Eqn 12) using (Eqn 54). It is 

interesting but not surprising that the Pex is negative for portions of the graph. This demonstrates 

that either Bertotti’s model is not completely accurate; the CPL Pv data obtained was not precise; 

or the choice of the σ value was incorrect.  The results of Section 3.2 and 3.3 lean toward the Ac 

and σ values in the above equation being the possible root cause of the error. The Pex negative 

value is accentuated when the 500 kHz data is used in Figure 52.   

 

 

Figure 51: Bertotti’s STPL Model Using 100 kHz Data 
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Figure 52: Bertotti’s STPL Model Using 500 kHz Data 

 Figure 53 is a plot of the 100-500 kHz CPL Pex values obtained using (Eqn 54), notice 4 of 

the 5 Pex plots in Figure 53 are below zero for more than half their plotted range, demonstrating 

Bertotti’s Pex model is a poor model at estimating CPL.  
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Figure 53: Pex using Bertotti’s STPL Model for 10

0-500 kHz data 

As was stated above, only one high frequency data points is required for Vo, but for the 

sake of accuracy, all the 100 kHz data was used to determine the LSBF of Vo. Figure 54 provides a 

plot of the LSBF Pex results for finding Vo. Table 26 provides the value of Vo and the resultant R
2
 

as determined by Figure 54.  
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Figure 54: Bertotti’s Excess Eddy Loss LSBF Vo term using 100 kHz data 

 The circle data points are the Pex values obtained using (Eqn  54), 

 

and the star data points are the Pex found using the LSBF Vo fit for  (Eqn 53).   

 

Table 26: EECL LSBF Residuals in finding Vo by using 100 kHz data for the 100 kHz Pex 
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Figure 55 is a graph of the CPL determined by using (Eqn 52).  Table 27 has the R
2
 for this 

LSBF using Vo as provided in Table 26 for 100-500kHz. The R
2
 for 100-300 and the 300-500 kHz 

were determined by using these data sets separately. 

 

Figure 55: Bertotti's Model vs Actual data for 100-500 kHz  

 
   

 Bertottis Model  R2  kh β Vo 
100-500 kHz 1649.2 .2083 2.4438 3.153E-3 

100-300 kHz 616.2 .2083 2.4438 3.153E-3 

300-500 kHz 1399.6 .2083 2.4438 3.153E-3 

The Matrix method used to evaluate Vo has the following equations. The form of the Pex can 

be broken down into the form y= C. This is a linear equation, which can be easily evaluated using 

LSBF matrix mathematics.   
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4.5.2 Hysteresis Loss Equation and Classical Eddy Current Equation (HLE & CECE) 

  
The second STPL to be analyzed is (Eqn 10), the Hysteresis Loss Equation and the 

Classical Eddy Current Equation. 

 

Justification for this equation comes from the authors of [4], who say the Excess Loss term 

in many STPL models for Ferrites is small and negligible when compared to the other STPL terms 

for high induction levels and frequencies below 500 kHz. This statement was supported by the 

results of 4.5.1. The kh and β determined in Sect 3.1 and given in Table 7 were used for the first 

STPL term in the above model. (Eqn 29) was used to provide the second term.  The results of this 

analysis are provided in Table 27 and Figure 56. The analysis compared actual 3F3 TN23/17/4 

CPL 100-500 kHz data to above STPL model.  

 

Table 27: R
2
 for Bertotti's Model minus the Excess Loss Term 

 
   

Bertotti’s Model minus Pex R2  kh β 
100-500 kHz 473.1 .2083 2.4438 

100-300 kHz 211.5 .2083 2.4438 

300-500 kHz 351.8 .2083 2.4438 

 
LSBF residuals (R

2
) were calculated using Eqn 45.  

  

ydata is the actual measured CPL data. yfit is results of using the Hysteresis Loss Equation and the 

Classical Eddy Current Equation results. 
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Figure 56: Plot of Bertotti's Model minus the Excess Loss Term 

 When the results of Sect 4.5.1 and 4.5.2 are compared, it is surprising to see, for at least the 

3F3 100-500 kHz data, the lowest residuals were found without using the Excess Eddy Current 

Loss term.  

See Appendix B for the program used to calculate the R
2
 values.  

 

4.5.3   Hysteresis Loss Equation and the PLE Equation Model (HLE & PLE) 

The Hysteresis Loss Equation and the PLE Model, (Eqn 11), were analyzed to see if a good 

CPL estimation equation model could be achieved by combining these two equations.        

                        

The kh and β determined in Sect 3.1 and given in Table 7 were used in for the Hysteresis 

Loss Equation coefficients. α and β2 were determined by taking Pv actual data and subtracting the 

Hysteresis Loss Equation from it. The kex, α and β2 coefficients were then curve fitted to that 

resultant CPL values.  Table 28 and Figure 57 provides the results of the LSBF of the model. 
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Table 28: HLE & PLE Model LSBF Results 

HLE & PLE  
Method 

R2 kh β1 kex α β2 

Matrix 100-500 kHz 46.7 .2083 2.4438 1.51E-7 2.170 2.476 

MATLAB 100-500 kHz 36.56 .2083 2.4438 8.54E-7 2.023 2.424 

Matrix 100-300 kHz 21.44 .2083 2.4438 3.33E-7 2.132 2.640 

MATLAB 100-300 kHz 21.93 .2083 2.4438 8.26E-7 2.035 2.493 

Matrix 300-500 kHz 18.84 .2083 2.4438 2.19E-8 2.289 2.318 

MATLAB 300-500 kHz 4.61 .2083 2.4438 6.40E-8 2. 232 2.463 

 

 

Figure 57: HLE & PLE Model Plot 

 

LSBF residuals (R
2
) were calculated using Eqn 45.  

  

ydata is the actual measured Pv CPL data. yfit is the CPL mathematical result of combining the 

Hysteresis Loss Equation and the PLE. 
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The Matrix method used to evaluate kex, α and β2 coefficients used the following equations. 

The PLE can be broken down into the following linear form y= C+Dx+Ez. This is a linear 

equation, which can be easily evaluated using LSBF matrix mathematics.   

 

 

 

      

 

See Appendix B for the program used to calculate the MATLAB non linear solution.  
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Chapter 5 Conclusions 

5.0 Results   

  

Four objectives were accomplished in this thesis. First, the Hysteresis Loss Equation was 

proven to be an accurate model for low frequency use in 3F3 power ferrites. Second, changes in 

3F3 core cross sections do not seem to affect overall values of CPL. This suggests that core loss 

per volume in high resistance MnZn Ferrites in general will not be a function of core cross 

sectional area, unlike some other materials. Third, the accuracy of using a constant value of σ in 

CPL estimation equation was proven to be poor, since σ was shown to vary with varying electric 

field. The last, which are in Table 29 and 30, was a ranking of the loss models in order ascending 

Least Square Best Fit (LSBF) residuals for two frequency ranges (100-300 kHz and 300-500 

kHz).   

 In Table 29, all the HLE models were fit to the low frequency coefficients in Table 7 

unless noted in the table. Using the PLE equation on the data set provided the best model. 

Unfortunately, this model required actual user determined CPL experimental data to obtain the 

results. The second best model was the HLE & PLE Model. This model required the most actual 

CPL data. The only two models in this data range that required absolutely no user obtained CPL 

data were the Ferroxcube PLE coefficients and the CECE model. Unfortunately, the CECE 

provided the least R
2
.  All the HLE equations required at least two data points.  The Ferroxcube 

3F3 provided PLE coefficients model was the best fit model with the least amount of user 

obtained CPL data collection. The second was the HLE & CECE model.   

 

Table 29: LSBF R
2
 for all Models using only 100-300 kHz 3F3 TN23/17/4 data 

 

 

As above, all the HLE models in Table 30 were fit to the low frequency coefficients in 

Table 7 unless noted in the table. Using the HLE & PLE equation on the data set provided the 

best most accurate mondel, but required the most CPL data. The second best model was the PLE. 

Model 
Equation R2 

Freq (100-300 kHz) 

PLE  20.83 

HLE & PLE  21.44 

HLE & CECE  211.5 

Ferroxcube PLE Coefficients  233.8 

Bertotti’s Model  616.2 

HLE  

651.51 (Fit using 100-500 kHz data) 
 HLE  

3699.4 (Fit using 70&140 Hz data) 
 

CECE  5367.1 
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This equation also required a tremendous amount of actual data to obtain an accurate model. The 

only two models analyzed that required zero CPL data was the Ferroxcube PLE coefficients and 

the CECE. The Ferroxcube PLE coefficient model was slightly better than the CECE.  All the 

HLE equations required at least two data points. So once again, the most accurate model for the 

least amount of user collected CPL data is the Ferroxcube 3F3 provided PLE coefficients model. 

The second was the HLE & CECE model.   

 

Table 30: LSBF R
2
 for all Models using only 300-500 kHz 3F3 TN23/17/4 data 

 

 

 

 

 

 

 

 

 

 

 

Model 
Equation 

R2 Freq (300-500 kHz) 
HLE & PLE  4.61 

PLE  5.73 

HLE  

184.8 (Fit using 100-500 kHz data) 
 HLE & CECE  351.8 

Ferroxcube PLE Coefficients  591.48 

CECE  651.51 

Bertotti’s Model  1399.6 

HLE  

4749.2 (Fit using 70&140 Hz data)   



90 

 

 

List of References  
[1] C. D. Graham, “Physical origin of losses in conducting ferromagnetic materials 

(invited),” J. Appl. Phys. 53(11), November 1982. 

[2] J. Reinert, A. Brockmeyer, R. W. De Doncker, “Calculation of losses in ferro-and 

ferromagnetic materials based on Modified Steinmetz Equation,” in Proc. 1999 IEEE Ind. 

[3] J. Li, T. Abdallah, and C. Sullivan, “Improved Calculation of Core Loss with 

Nonsinusoidal Waveforms,” IAS 2001. 

[4] J. Fan, F. Sale, “Analysis of Power Loss on Mn-Zn Ferrites Prepared by Different 

Processing Routes.” IEEE Transactions On Magnetics, Vol. 32, NO. 5, Sept 1996. 

[5] E. Snelling, “Soft Ferrite: Properties and Applications,” 2
nd

 Edition, Butterworth, 

1998 pg 35, 147. 

[6] P. Nakmahachalasit, K. Ngo, and L. Vu-Quoc, “A Static Hysteresis Model for 

Power Ferrites,” IEEE Transactions on Power Electronics, VOL. 17, No. 4 July 2002. 

[7] C. Steinmetz, “On the law of hysteresis,” AIEE Transactions, Vol 9,  pp. 3-64, 

1892. 

[8] Y. Sakai, T. Matsuoka, “Hysteresis Losses in Mn-Zn Ferrite Cores.” IEEE 

Transactions On Magnetics, Vol. MAG-22, NO. 5, Sept 1986. 

[9] G. Bertotti, “General properties of power losses in soft ferromagnetic materials,” 

IEEE Transactions On Magnetics, Vol. 24,pp. 621-630, Jan. 1988. 

[10] E. Snelling, A. Giles, “Ferrites for inductors and transformers,” Research Studies 

Press LTD. Letchworth, Hertfordshire, England 1983. 

[11] A. Bossche, V. Valchez, D. Van de Sype, L. Vandenbossche, “Ferrite Losses of 

cores with square wave voltages and dc bias,” Journal of Applied Physics 99, 08M908 (2006). 

[12] Ferroxcube A Yageo Company, “Design of Planar Power Transformers, 

Application Notes.” Netherlands, February 2001. 

[13] S. Mulder, “Loss formulas for power ferrites and their use in transformer design,” 

Philips Componets, 1994. 

[14] G. Bertotti, F. Fiorillo, G. P. Soardo, “Dependence of Power Losses on Peak 

Magnetization Frequency in Grain-Oriented and Non-Oriented 3% SiFe,” IEEE Transactions on 

Magnetics, Vol. MAG-23, No. 5, September 1987. 

[15] J. Goodenough, “Summary of Losses in Magnetic Materials,” IEEE Transactions 

on Magetics,” Vol.38 Nov 5, September 2002. 

[16] R. Bozorth, “Ferromagnetism,” IEEE Press, 2003. 

[17] H. Saotome, Y. Sakaji, “Iron Loss Analysis of Mn-Zn Ferrite Cores,” IEEE 

Transactions on Magnetics, Vol. 33,  No. 1, January 1997.  

[18] K. V. Namjoshi, J. D. Lavers, P. P. Biringer, “Eddy-Current Power Loss in 

Toroidal Cores with Rectangular Cross Section,” IEEE Transactions on Magnetics, Vol. 34, NO. 

3, MAY 1998. 

[19] K. J. Overshott, “The use of domain observations in understanding and improving 

the magnetic properties of transformer steels,” IEEE Transactions on Magnetics, Vol. 12, pp840-

845, 1976. 

[20] K. J. Overshott, “The Causes of the Anomalous Loss in Amorphous Ribbon 

Materials,” IEEE Transactions on Magnetics, Vol. MAG-17, No. 6, November 1981. 

[21] International Standard IEC 62044-2 2005-03 



91 

 

[22] A. Goldberg, “Development of Magnetic Components For 1-10 MHZ DC/DC 

Converters.” Massachusetts Institute of Technology, September 1998 Phd Thesis. 

[23] International Standard IEC 62044-1 2002 

[24] W. Roshen, “Non-linear tunneling charge transport in soft ferrites,”  Journal of 

Magnetism and Magnetic Materials, Volume 312, Issue 2, May 2007, Pages 245-251 

[25] A. Sadiku, Fundamentals of Electric Circuits, Co 2000, McGraw Hill Publishing 

pg 437.  

[26] Ferroxcube A Yageo Company, “Soft Ferrite - Introduction.” Netherlands, 01 

September 2004 

[27] G. Strang, Linear Algebra and Its Applications, Second Edition, Co 1980 

Academic Press, New York pg 118-119. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  



92 

 

Appendix A:  MATLAB CODE 

 

%************************************************************************** 

%The below is the MATLAB code used to determine the CPL of the different 

cores 

%This code was written by Colin Dunlop  

 

 

clear all 
 %TC6.3/3.8/2.5 
%      Resistor=.808; %Sensing Resistor 
%     N=30;         %Number of Turns 
%     le=15.2e-3;   %le effective length of Toriod (m 
%     Ae=3.06e-6;   %Ae effective area of Toriod 
%     Ve=46.5e-9;   %Ve effective volume core in (m^3) 
%    Vecm=.0465;      %Ve in (cm^3) 
%     mho=4*pi()*10^(-7); 
%      

  
% %TX13/7.9/6.4 
%  Resistor=.808; %Sensing Resistor 
%     N=13;         %Number of Turns 
%     le=31.2e-3;   %le effective length of Toriod (m 
%     Ae=14.1e-6;   %Ae effective area of Toriod 
%     Ve=442e-9;   %Ve effective volume core in (m^3) 
%     Vecm=.442;      %Ve in (cm^3) 
% mho=4*pi()*10^(-7); 

  
%TN23/14/7  
     Resistor=.808; %Sensing Resistor 
    N=13;         %Number of Turns 
    le=55.8e-3;   %le effective length of Toriod (m 
    Ae=30.9e-6;   %Ae effective area of Toriod 
    Ve=1722e-9;   %Ve effective volume core in (m^3) 
    Vecm=1.722;      %Ve in (cm^3) 
    mho=4*pi()*10^(-7); 

  
% %TX36/23/15 
%  Resistor=.808; %Sensing Resistor 
%     N=13;         %Number of Turns 
%     le=89.7e-3;   %le effective length of Toriod (m 
%     Ae=97.5e-6;   %Ae effective area of Toriod 
%     Ve=8740e-9;   %Ve effective volume core in (m^3) 
%     Vecm=8.75;      %Ve in (cm^3) 
% mho=4*pi()*10^(-7); 

  
% %TX50/30/19 
%      Resistor=.808; %Sensing Resistor 
%     N=13;         %Number of Turns 
%     le=120.4e-3;   %le effective length of Toriod (m 
%     Ae=186e-6;   %Ae effective area of Toriod 
%     Ve=22378e-9;   %Ve effective volume core in (m^3) 
%     Vecm=22.378;      %Ve in (cm^3) 
%     mho=4*pi()*10^(-7); 
%  
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%%Reads files into  

  
[V]=textread('V55.dat','%f');    %Reads in the Voltage Data 
[I]=textread('I55.dat','%f');    %Reads in the Current Data 

  
for j=5:(length(V))             % Seperates the Data into Usable form 
 V1(j-4)=V(j);                  %Found the offset 
end 

  
for j=5:(length(I))             % Seperates the Data into Usable form 
I1(j-4)=I(j)/Resistor; 
end 

   
tint=V(2);      %Gives the indice of the time interval 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%For Hysterisis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%test 
% w=377; 
% T=2*pi()/w; 
% tint=.0001; 
% t=linspace(0,2*T,1/tint); 
% V1=120*cos(377.*t+45*pi()/180); 
% I1=10*cos(377.*t-10*pi()/180); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

   
%%%%%%%%% Put back in 
t=linspace(0,length(V1)*tint,length(V1)); %Creates a time function for the  
%%%%%%%%%%% 
V1=detrend(V1,'constant'); 

   
%gives the index of the Voltages to find what is a waveform 
[Vzero, Zerot, Zerotact] = Zero(V1, t);  %Shows the Zero pionts of the gragh 

   
n=0; 
while rem(length(Zerot)-1-n,2)==0  %used to give only a full cycle of Voltage 
        n=n+1;                     %if odd number of zeros windows in 
end 
min1=1;                             %first zero crossing used later on 
if length(Zerot)==3 
max1=2; 
else 
%first zero crossing used later on 
max1=length(Zerot)-n-2;               %As n goes up the max value of zeros 

goes down 
end               %As n goes up the max value of zeros goes down 

  
V1temp=V1(Zerot(min1):Zerot(max1+1)); 
vmean=mean(V1temp); 
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for i=1:length(V1) 
    Vtemp(i)=V1(i)-vmean; 
end 

   
V1=Vtemp; 
 I1temp=I1(Zerot(1):Zerot(3)); 
Imean=mean(I1temp); 
 for i=1:length(V1) 
    Itemp(i)=I1(i)-Imean; 
end 

  
 I1=Itemp; 
 %Gives the Power of I1 and V1 
for q=1:length(V1) 
       P(q)=I1(q)*V1(q); 
end 
 %gives the index of the Voltages to find what is a waveform 
% [Vzero, Zerot, Zerotact] = Zero(V1, t);  %Shows the Zero pionts of the 

gragh 
% n=0; 
% while rem(length(Zerot)-1-n,2)==0  %used to give only a full cycle of 

Voltage 
%         n=n+1;                     %if odd number of zeros windows in 
% end 
% min1=1;                             %first zero crossing used later on 
% max1=length(Zerot)-n               %As n goes up the max value of zeros 

goes down 
  z=1;           %temp iterator 
 i=1;  
 y=1; 
 o=1; 
 while i~=(max1)/2+1   %uses a while loop, seemed to work better then for 

loop do not know why    
     for m=(Zerot(y)):(Zerot(y+2))     %iterates over the range of one 

voltage cycle    
         Bflux(z)=tint*trapz(V1((Zerot(y)):m))/(N*Ae); %Starts at zero and 

then gets Bflux   
                 if m~=Zerot(y+2)                           %for the cycle 
                         z=z+1; 
                 end 
     end 
        p=z; %sets the limit on one half cycle 
        Bpeak(i)=(max(Bflux(o:p))-min(Bflux(o:p)))/2; %gives the Bpeak of 

every cycle 
         i=i+1; %iterates the while loop 
         y=y+2; %iteratates the wave 
         o=z;  %sets the limit on one half cycle 
 end 

  
 if mean(Bflux)<=0  %% Ensures the B vs H leans to the right by flipping the 

B values and making them positive 
          Bflux=Bflux.*(-1); 
 end 
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 Vtemp=V1(Zerot(min1):(Zerot(max1+1)));  %Vtemp is used in the plot over the 

range of Bflux 
 Btime=t(Zerot(min1):(Zerot(max1+1)));                  %Btime is used in the 

plot of time the range of Bflux 
 Bpk=mean(Bpeak)*1000;                                       %Gives the Bpeak 

of the waveforms 
Bmin=min(Bflux); 
Bmax=max(Bflux);  
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 
 %%Gives the H field using N,Reff, and I as input parameters 
for q=1:length(I1) 
    Hfield(q)=I1(q)*N/le; 
end 
y=1; 
i=1;  %Gives the Pk of the H 
  while i~=(max1)/2+1 
      Hpeak(i)=(max(Hfield(Zerot(y):Zerot(y+2)))-

min(Hfield(Zerot(y):Zerot(y+2))))/2; 
      i=i+1; 
      y=y+2; 
  end 
 Hpk=mean(Hpeak); 

  
Hused=Hfield(Zerot(1):Zerot(3)); 
Hlength=length(Hused); 
 Hmin=min(Hfield(Zerot(1):Zerot(3))); 
 Hmax=max(Hfield(Zerot(1):Zerot(3))); 

  

  
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %Pvavg 
    z=1; %increments Paveout 
    i=1; %Breaks while loop 
    q=1; %Increments time average of P 
       y=1; 
       u=1; 

           
      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for hysterisis 
      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% test 
     % Vecm=1 
      %Ve=Vecm/10^6 
      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
while i~=(max1)/2+1   
        for m=(Zerot(y)):(Zerot(y+2))          
             if m-Zerot(y)==0 
                 Paveout(z)=0; 
                 z=z+1; 
             else 
                 Paveout(z)=tint*trapz(P(Zerot(y):m))*(1000/Vecm)/(tint*(m-

Zerot(y))); 
                 if m~=Zerot(y+2) 
                      z=z+1; 
                 else 
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                      Paveout1(q)=tint*trapz(P(Zerot(y):Zerot(y+2)))*(1e-

3/(Ve))/(tint*(Zerot(y+2)-Zerot(y))); %(Kw/m^3) 
                      q=q+1; 
                 end 
             end 
         end 
         i=i+1; 
         y=y+2; 
end 
    % Paveout(z+1)=tint*trapz(P(Zerot(max1-

1):Zerot(max1+1)))*(1e+3/Vecm)/(tint*(m-Zerot(i))); 
  %%Figure plots       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% 
  % 

Paveout1=tint*trapz(P(Zerot(low):Zerot(high)))*(1e+3/Vecm)/(tint*(Zerot(high)

-Zerot(low))); %(mW/cm^3) 
   tave=t(Zerot(min1):Zerot(max1+1)); 
   Pvave=P(Zerot(min1):Zerot(max1+1))*(1000/Vecm); 
   Paveout1=mean(Paveout1); 

    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 
%GRAPHING 
   %7.4f 

    
% mhospec=(Bmax/1000)/Hmax; 
% mhorel=(Bmax/1000)/(Hmax*mho); 
%  
%     
% fprintf('\n   Bpk     Paveout   Relative Perm    Specific Perm \n') 
% fprintf('    %7.4f      %7.4f       %7.4f       %7.4f ', Bpk,Paveout1, 

mhorel, mhospec ) 
%  fprintf('\n') 
%  
% figure(1) 
% plotVandI(t,V1,I1,tint,Bpk)  %Plots the data of V and Current 
% %title('Voltage') 
% figure(1) 
% %hold on 
% 

%plotBandH(Bflux(Zerot(min1):Zerot(min1+2)),Hfield(Zerot(min1):Zerot(min1+2))

,tint,Bpk) 
% plotBandH(Bflux,Hused,tint,Bpk) 
% 

plotBandH(Bflux(Zerot(min1+2):Zerot(min1+4)),Hfield(Zerot(min1+2):Zerot(min1+

4)),tint,Bpk) 
% 

plotBandH(Bflux(Zerot(min1+4):Zerot(min1+6)),Hfield(Zerot(min1+4):Zerot(min1+

6)),tint,Bpk) 
% 

plotBandH(Bflux(Zerot(min1+6):Zerot(min1+8)),Hfield(Zerot(min1+6):Zerot(min1+

8)),tint,Bpk) 
% figure(3) 
%  plot(tave,Pvave) 
%  grid on 
%  title(['Pv ',num2str(Bpk),' mT']) 
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%  xlabel('time (s)') 
%  ylabel('Power (mW/cm^3)')  
%  figure(6) 
% plotHandI(t,Hfield,I1,tint,Bpk)  %Plots the data of H and Current 
%  
% figure(8) 
% plotVvsIsingle(V1,I1,Bpk) 
% figure(7) 
% plotBandV(Btime,Bflux,Vtemp,tint,Bpk)  %Plots the data of B and Voltage 
%   
% % r=1; 
% % figure(9) 
% % for i=Zerot(1):length(Zerot(1):Zerot(3)) 
% %         if i>=Zerot(2) 
% %             Vtemp2(i)=-V1(i-length(Zerot) 
% %             r=r+1; 
% %         else 
%              
%      
%   
%   
%  figure(4) 
% %  plot(tave,Paveout) 
% [AX,H1,H2]=plotyy(tave,Paveout,tave,Pvave); 
%  grid on 
%  title(['Pvavg ',num2str(Bpk),' mT']) 
% %[AX,H1,H2] = plotyy(t,V1,t,I1,'plot'); 
% set(get(AX(1),'Ylabel'),'String','<Pave> (mW/cm^3)'); 
% set(AX(1),'xlim',[t(1) t(length(t))]); 
% set(AX(1),'XminorGrid','on'); 
% set(AX(1),'YminorGrid','on'); 
% set(AX(1),'YminorTick','on'); 
% set(AX(1),'YGrid','on'); 
% set(get(AX(2),'Ylabel'),'String','Pave (mW/cm^3)'); 
% set(AX(2),'xlim',[t(1) t(length(t))]); 
% set(H1,'LineStyle','--'); 
% set(H2,'LineStyle','--'); 
% title(['Average Power and Power ',num2str(Bpk),' mT']) 
% xlabel('time (s)') 
% ylabel('Power (mW/cm^3)')      
%  
% [X,f,Pyy]=fftfunc(V1(Zerot(1):Zerot(3)),tint); 

  

  
% windowSize=60; 
% Hfilt=filtfilt(ones(1,windowSize)/windowSize,1,Hused); 
% Bfilt=filtfilt(ones(1,windowSize)/windowSize,1,Bflux); 
% figure(2) 
% plotBandH(Bfilt,Hfilt,tint,Bpk) 

  

  
% figure(3) 
% grid on 
% plotyy(Btime,Bflux,Btime,Hused) 
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for i=1:length(Hused) 
    if abs(Hused(i)-Hmax)<=1e-7 
        Hmax_in=i; 
    end 
    if abs(Hused(i)-Hmin)<=1e-7 
        Hmin_in=i; 
    end 
end 

  
Hused((Hlength+1):(2*Hlength))=Hused; 
Bused=Bflux; 
Bused((Hlength+1):(2*Hlength))=Bflux; 

  
if Hmax_in < Hmin_in 
        first_in=Hmax_in; 
        sec_in=Hmin_in; 
    else 
        first_in=Hmin_in; 
        sec_in=Hmax_in; 
end 
Bused=detrend(Bused, 'constant'); 
third_in=first_in+Hlength; 
sumtrap=-(trapz(Hused(first_in:sec_in),Bused(first_in:sec_in))+ 

trapz(Hused(sec_in:third_in),Bused(sec_in:third_in)));    
Pvhys=(sumtrap/(tint*length(Zerot(1):Zerot(3))))*10^-3; 
% figure(4) 
% grid on 
% hold on 
% plot(Hused(first_in:sec_in),Bused(first_in:sec_in),'b') 
% plot(Hused(sec_in:third_in),Bused(sec_in:third_in),'r') 
Bmax=max(Bused)*1000; 

  
% title(['Hysterisis ',num2str(Bmax),' mT']) 
% xlabel('Hfield (A/m)') 
% ylabel('Bflux (mT)')  

  

  
% figure(5) 
% plotVandI(t,V1,I1,tint,Paveout1) 

  
mhospec=(Bmax/1000)/Hmax; 
mhorel=(Bmax/1000)/(Hmax*mho); 

  

    
%fprintf('\n   Bpk     Paveout      Relative Perm         Specific Perm \n') 
fprintf('\n%7.4f\n%7.4f\n%7.4f\n%7.7f', Bpk,Paveout1, mhorel, mhospec ) 
 fprintf('\n') 
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%************************************************************************** 

%The below is the MATLAB code used to determine the Least Square Best Fit 

%Residuals for the PLE equation and provide a plot of the data. All other 

%models used this code with slight modifications. This program calls the 

%LSQRmat file and a Pvdata dat file. Both codes will follow this program. 

This %code was written by Colin Dunlop  

 

clc; 
clear; 

  
[X,y]=Pvdata(); 
name=@PLE_func; 
[beta0,yfit]=LSQRmat; %The coefficient results are the matrix fit are fed 

into                 

                      %fed into a array for plotting 

  
yfitmatrix=feval(name,beta0,X); 

  
options = statset('TolFun',1e-40,'TolX',1e-

40,'MaxIter',160000,'DerivStep',1e-10); 
[beta,R,J]= nlinfit(X,y,name,beta0);   %nlinfit is a built in Matlab function 
ci = nlparci(beta,R,J);              %which provides the non linear fit to 

data 
[Ypred, delta] = nlpredci(name,X,beta,R,J); 
x=X(:,2); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
yfit=feval(name,beta,X); 
for i=1:length(x) 
    chi(i)=(((y(i)-yfit(i))).^2)/y(i); 
end 

  
RChiSquare = sum(chi); 

  

  
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% %%% PLOTTING YOUR DATA AND FIT %%% 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%  
 figure (1);  % opens figure 1 and makes it active 
 clf;         % clears the active figure 
 hold on;     % Makes matlab plot without clearing the graph 

  
 %plot(x,y,'k*') 
%plot(x,y,'rx');        % Plots  the fitted curve 
 hold on;     % Makes matlab plot without clearing the graph 

  
 plot(x,y,'bo') 
 plot(x,yfitmatrix,'kd');        % Plots  the fitted curve 
 plot(x,Ypred,'r.');        % Plots  the fitted curve 
 array=(linspace(30,300,20))'; 
D=300000.*ones(length(array),1); %creates a ones array the length of the 

number of B inputs 
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A=cat(2,D,array); 
yfitcurve=feval(name,beta0,A); 

  
%plot(array,yfitcurve,'r--'); 
%plot(x(1:13),yfitmatrix(1:13),'r--') 
%plot(x(1:6),yfitmatrix(1:6),'r--') 

  

  
%%%%%%%%%%%%%%%%%%%%%Get rid of 
name=@PLEMan_func; 
yfitman=feval(name,beta,X); 
%plot(x,yfitman,'k*') 
%plot(x(1:13),yfitmatrix(1:13),'r--') 

  
 legend('Actual Data','Matrix Fit','Matlab Fit','Ferroxcube Fit','Best fit 

Curve','Location','NorthWest' ); 
%   

  
%plot(x(7:12),yfit(7:12),'r--') 
%plot(x(13:18),yfit(13:18),'r--') 
%plot(x(14:19),yfitmatrix(14:19),'r--') 
%plot(x(20:25),yfitmatrix(20:25),'r--') 
%plot(x(26:31),y(26:31),'k--') 
%plot(x(32:37),y(32:37),'k--') 

  
% array=(linspace(30,300,20))'; 
% D=300000.*ones(length(array),1); %creates a ones array the length of the 

number of B inputs 
%  
% A=cat(2,D,array); 
% yfitcurve=feval(name,beta,A); 
%  
% plot(array,yfitcurve,'r--'); 
%  
% array=(linspace(30,300,20))'; 
% D=400000.*ones(length(array),1); %creates a ones array the length of the 

number of B inputs 
%  
% A=cat(2,D,array); 
% yfitcurve=feval(name,beta,A); 
%  
% plot(array,yfitcurve,'r--'); 
% array=(linspace(30,300,20))'; 
% D=500000.*ones(length(array),1); %creates a ones array the length of the 

number of B inputs 
%  
% A=cat(2,D,array); 
% yfitcurve=feval(name,beta,A); 
%  
% plot(array,yfitcurve,'r--'); 

  

  
 x1=min(x); 
 x2=max(x); 
 grid on 
% axis([40,340,0,2250]);   
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 %axis([x1-1/16*x1,x2,min(y),max(y)]); 
      % sets visible range of the plot 
% %  
  title(['3F3 TN23/14/7 for 100-300(khtz) kh = ',num2str(beta0(1,1)),' \beta 

=',num2str(beta0(2,1)),' \alpha =',num2str(beta0(3,1))],'fontsize',12); 
% %        % Places the title on the graph 
  %xlabel('B (mT)','fontsize',14,text(5,120,['\chi^2_{\nu-1} = ' str1]) );  % 

Labels the 'x' axis 
  ylabel('Pv (kW/m^3)','fontsize',14);  % Labels the 'y' axis 
% %  
str1=num2str(RChiSquare,2); 
%text(170,.4,['\chi^2_{\nu-1} = ' str1]); % Plots the reduced chi-square 
%text(170,.7,['\alpha = ' str1]); % Plots the reduced chi-square 
%  
%  
xlabel('B (mT) ','fontsize',14 );  % Labels the 'x' axis 
fprintf('    nlinfit kh     nlinfit beta  nlinfit alpha  nlinfit Rchi\n') 
fprintf('    %7.7f      %7.7f   %7.7f    %7.7f \n', beta(1,1), beta(2,1), 

beta(3,1),RChiSquare) 
%%%%% 
 

%************************************************************************** 

%The below is the MATLAB code used to determine the matrix Least Square Best 

%Fit: LSQRmat.m 

%Residuals for the PLE equation matrix are provided 

% All other models used this code with slight modifications. This program 

calls %the Pvdata data file. This code follows this program.  

%This code was written by Colin Dunlop  

 
%%%%%%%This code uses matrix mathmatics to solve the simple formula  
%  y=kh*f*I^alpha Strang Linear Algebra and its Applications pg 118 

  
function [beta1,yfit]=LSQRmat() 
name=@PLE_func; 
% clc; %clears the command window 
% clear; %clears all varibles 

  

  
[X,y]=Pvdata(); %inputs the data 

  

  

  
b=log(y);    %gets the log of the formula set log(y/f)=alpha*log(I)+log(kh) 
fm=log(X(:,1)); 

  
B=log(X(:,2)./1000); 

  
Array=cat(2,B,fm); 

  
D=ones(length(B),1); %creates a ones array the length of the number of B 

inputs 
A=cat(2,D,Array); 

  
At=A'; 
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x=inv(At*A)*At*b; 

  
beta1(1,1)=exp(x(1)); 
beta1(2,1)=(x(2)); 
beta1(3,1)=(x(3)); 

  

  
sig = sqrt(y); 
yfit=feval(name,beta1,X); 

  
for i=1:length(B) 
    chi(i)=((y(i)-yfit(i))).^2/y(i); 
   % chi(i)=((y(i)-yfit(i))./1).^2; 
end 

  
chisq=sum(chi); 
RChiSquare = chisq; 

  
fprintf('\n    Matrix C1    Matrix Beta      Matrix alpha      Matrix 

Rchi\n') 
fprintf('    %7.7f      %7.7f           %7.7f        %7.7f',beta1(1,1), 

beta1(2,1),beta1(3,1),RChiSquare) 
fprintf('\n\n') 

 

%************************************************************************** 

%The below is the MATLAB data file Pvdata. It provided the data for the above 

two codes. This is for the TN23/14/7 3F3 toroid  

 

function [X,y]=Pvdata() 

    
X=[     
 70    78.99 
 70    123.55 
 70    169.27 
 70    298.07 
 140   37.74 
 140   91.90 
 140   163.63 
 140   226.49 
 140   274.43 
100000  48.7365 
100000  60.7911 
100000  72.6238 
100000  102.2023 
100000  104.0705 
100000  154.5854 
100000  166.0821 
100000  197.4659 
100000  204.4652 
100000  237.3057 
100000  256.8447 
100000  282.5612 
100000  328.8517 
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200000  41.8692 
200000  74.1496 
200000  98.6685 
200000  132.8864 
200000  161.5689 
200000  193.7655 
300000  49.3198 
300000  63.0888 
300000  85.6389 
300000  97.7819 
300000  129.2605 
300000  157.5516 
400000    57.9333 
400000    66.0335 
400000    77.0299 
400000    85.967 
400000    97.0009 
400000    121.1181 
500000    11.8062 
500000    19.1405 
500000    39.9354 
500000    47.6942 
500000    61.8369 
500000    78.6639 

  

  
]; 

  
y=[ 
 0.0204 
 0.0757 
 0.1679 
 0.7679 

  
 0.0113 
 0.1037 
 0.4344 
 0.8166 
 1.247 

  
%  
18.4427 
32.7486 
45.4667 
110.2763 
134.794 
342.1314 
385.68 
631.2197 
635.5609 
915.6343 
1192.3756 
1570.1522 
2077.6729 
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31.3657 
132.5157 
305.0194 
635.4071 
1035.3813 
1651.552 

  
101.1267 
186.263 
388.6729 
554.1156 
1120.7266 
1821.2589 

  
 254.9548 
 361.6122 
 524.7969 
 680.9328 
 930.8987 
 1583.1784 
 11.252 
 32.4611 
 159.8956 
 254.5507 
 484.7686 
 852.6831 

  

  
]; 

  
x=X(:,2); 
f=X(:,1); 
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Appendix B:  CPL Collected Data 

The CPL data in Table 31 and 32 was used for all the CPL models for the TN23/14/7 

core. Six frequencies and varying magnetic fluxes were used in the data set.  

Table 31: TN23/14/7 Data 70 Hz, 140 Hz and 100 kHz data 

Freq 

(Hz) 

B      

(mT) 

Pv 

(kW/m
3

) 
70 78.99 0.0204 

70 123.55 0.0757 

70 169.27 0.1679 

70 298.07 0.7679 

140 37.74 0.0113 

140 91.90 0.1037 

140 163.63 0.4344 

140 226.49 0.8166 

140 274.43 1.247 

100000 48.7365 18.4427 

100000 60.7911 32.7486 

100000 72.6238 45.4667 

100000 102.2023 110.2763 

100000 104.0705 134.794 

100000 154.5854 342.1314 

100000 166.0821 385.68 

100000 197.4659 631.2197 

100000 204.4652 635.5609 

100000 237.3057 915.6343 

100000 256.8447 1192.376 

100000 282.5612 1570.152 

100000 328.8517 2077.673 
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Table 32 TN23/14/7 Data 200 - 500 kHz data 

Freq 

(Hz) 

B      

(mT) 

Pv 

(kW/m
3

) 
200000 41.8692 31.3657 

200000 74.1496 132.5157 

200000 98.6685 305.0194 

200000 132.8864 635.4071 

200000 161.5689 1035.381 

200000 193.7655 1651.552 

300000 49.3198 101.1267 

300000 63.0888 186.263 

300000 85.6389 388.6729 

300000 97.7819 554.1156 

300000 129.2605 1120.727 

300000 157.5516 1821.259 

400000 57.9333 254.9548 

400000 66.0335 361.6122 

400000 77.0299 524.7969 

400000 85.967 680.9328 

400000 97.0009 930.8987 

400000 121.1181 1583.178 

500000 11.8062 11.252 

500000 19.1405 32.4611 

500000 39.9354 159.8956 

500000 47.6942 254.5507 

500000 61.8369 484.7686 

500000 78.6639 852.6831 
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The data in Table 33 and 34 was collected using the apparatus described in Section 3.2 

and the 3F3 PLT 58/38/4.  

Table 33: Conductivity AC data for 3F3 Plata 

Phase ( ) I pk Vpk Z Conductivity Freq 

Temp 

( C) E/m 

62.784 0.0207 27.4093 606.7098 -1179.7192 0.6445 100000 61.2 472.74 

62.856 0.0382 43.731 522.2065 -1018.5513 0.7488 100000 61.7 754.24 

62.784 0.0445 49.7621 511.0458 -993.7049 0.7651 100000 61.4 858.26 

62.568 0.0639 64.929 468.2734 -902.1575 0.835 100000 62.3 1119.85 

63.288 0.0798 77.8922 438.7402 -871.8829 0.8912 100000 62.3 1343.43 

64.944 0.0447 21.0305 199.4334 -426.5972 1.9607 500000 62.8 362.72 

63.864 0.0905 36.3687 177.0543 -360.8388 2.2085 500000 62.8 627.26 

61.272 0.1664 55.7468 161.0563 -293.8343 2.4279 500000 62.8 961.48 

61.2 0.2297 70.6188 148.1223 -269.4335 2.6399 500000 62.4 1217.99 

67.176 0.0404 20.7961 199.7087 -474.5317 1.958 500000 43.6 358.68 

66.312 0.0636 29.3915 185.7548 -423.4021 2.105 500000 43.3 506.92 

65.304 0.113 46.0075 170.0527 -369.7891 2.2994 500000 43.4 793.51 

64.584 0.163 59.8689 157.6757 -331.8251 2.4799 500000 43.6 1032.58 

63.792 0.2272 75.3812 146.5576 -297.7394 2.668 500000 43.6 1300.12 

63.144 0.3138 94.0156 135.3354 -267.2691 2.8893 500000 43.9 1621.52 

 

Table 34: DC Conductivity for 3F3 Plate 

Temp E (V/m) Voltage (V) Current (mA) σ 

44.0 443.3 25.7 2.7 0.04 

44.0 865.8 50.2 7.8 0.06 

44.0 1324.6 76.8 18.1 0.09 

44.0 1714.4 99.4 26.2 0.10 

45.0 2168.0 125.7 38.2 0.12 

45.0 2581.9 149.7 53.7 0.14 

54.6 443.3 25.7 5.5 0.08 

54.7 874.4 50.7 13.0 0.10 

54.9 1302.2 75.5 21.7 0.11 

55.2 1724.7 100.0 33.3 0.13 

55.4 2259.4 131.0 51.2 0.15 

55.9 2845.8 165.0 78.8 0.19 

56.0 3311.5 192.0 111.3 0.23 

62.7 507.1 29.4 7.9 0.11 

62.9 1033.1 59.9 21.2 0.14 

63.4 1547.1 89.7 39.0 0.17 

64.0 2104.2 122.0 61.3 0.20 

65.0 3449.5 200.0 158.4 0.31 

Data in Table 35 was collected using the 4192A LF 5 Hz -13MHz Hewlett Packard 

Impedance Analyzer with a 16047A test fixture and the 3F3 PLT 58/38/4 plate explained in 

Section 2.4.  
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Table 35: Data using Impedance Analyzer 

Temp 

( C) Z (kΩ) 

Phase 

( ) R (kΩ) 
Freq 
(hz) 

Capacitance 
(F) 

27.4 14.1 0 13.7 10 0.000E+00 

27.4 13.1 -0.5 12.4 100 1.270E-05 

27.4 13.2 -5 13.31 1000 1.497E-07 

27.4 9.8 -30.08 8.4 10000 3.217E-09 

27.4 2.75 -59.18 1.459 100000 6.678E-10 

27.4 0.8353 -66.34 0.3148 500000 4.400E-10 

27.4 0.4391 -67.08 0.1941 1000000 3.388E-10 

The CPL data in Table 36 and 37 was used for all the CPL models for the 6 cores. 

Table 36: 6 Varying Core Sizes CPL Data 100 kHz 

Core 
Freq 

(Hz) 

B      

(mT) 

Pv 

(kW/m
3

) 

TN23/14/7 
Core 1 

100000 166.0821 385.68 

100000 204.4652 635.5609 

100000 237.3057 915.6343 

100000 328.8517 2077.6729 

TN23/14/7 
Core 1 

100000 48.7365 18.4427 

100000 60.7911 32.7486 

100000 104.0705 134.794 

100000 282.5612 1570.1522 

TN23/14/7 
Core 2 

100000 40.571 10.6748 

100000 50.3946 17.9718 

100000 64.1714 32.795 

100000 91.2084 82.0175 

100000 246.9622 1015.5247 

 
TC6.3/3.8/2.5 

100000 116.595 180.4562 

100000 173.9523 519.6164 

100000 219.5139 947.4827 

 TX50/30/19 

100000 17.0836 1.8337 

100000 19.0696 2.3511 

100000 25.5492 4.6827 

100000 36.4404 11.3051 

100000 86.389 90.0786 

 TX36/23/15 

100000 8.946 0.546 

100000 13.8393 1.4257 

100000 58.221 26.2166 

100000 142.6036 237.9579 

 TX 13/7.9/6.4 

100000 95.7404 70.4373 

100000 127.576 155.2404 

100000 191.7821 437.1653 

100000 288.918 1235.0865 
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Table 37: 6 Varying Core Sizes CPL Data 500 kHz 

Core 
Freq 

(Hz) 

B      

(mT) 

Pv 

(kW/m
3

) 

TX36/23/15 

500000 6.2922 2.3313 

500000 8.5426 4.5691 

500000 12.0581 9.9721 

500000 28.7991 76.8474 

500000 35.2054 134.4838 

TX 
13/7.9/6.4 

500000 19.9283 28.5248 

500000 24.2512 43.1979 

TX 
13/7.9/6.4  

500000 37.695 119.5079 

500000 48.4352 212.8961 

500000 60.2097 357.1465 

500000 102.844 1330.979 

500000 178.938 4845.753 

TN23/14/7 
Core 1 

500000 11.8062 11.252 

500000 19.1405 32.4611 

500000 39.9354 159.8956 

500000 47.6942 254.5507 

500000 61.8369 484.7686 

500000 78.6639 852.6831 

TX51/32/19 
500000 7.0594 4.9692 

500000 17.045 33.1908 

TX 
6.3/3.8/2.5 

500000 39.1581 164.4293 

500000 61.2579 534.6423 

500000 77.1575 907.2635 

500000 202.696 9071.844 

500000 211.0727 9885.569 

TN23/14/7 
Core 2 

500000 19.1405 32.4611 

500000 36.2616 133.1583 

500000 98.5013 1413.678 
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